|
基于机器学习的智慧医养融合平台用户行为分析与流失预警模型构建研究
|
Abstract:
目的:探讨智慧医养融合平台的用户行为特征,构建基于机器学习的用户流失预警模型,为平台精细化运营提供决策支持。方法:以安徽省阜阳市某智慧医养融合平台2020年1月至2024年6月的用户数据为研究对象(n = 1237),采用RFM模型分析用户行为特征,运用K-means算法进行用户分群,构建包括逻辑回归、随机森林、LSTM等多种机器学习模型进行流失预警。结果:用户以60~79岁人群为主(79.55%),家政服务是最常用服务类型(50.62%)。识别出四类典型用户群体,其中低频–低价值用户的流失风险最高(风险指数为0.68)。LSTM模型展现出最优的预警性能(AUC = 0.961,准确率 = 0.923),能够提前平均21天预警潜在流失用户。最近一次使用服务的时间间隔(SHAP值 = 0.284)是最重要的预测特征。基于模型预测结果的干预措施使高风险用户留存率提升32.5%。结论:基于机器学习的流失预警模型能有效识别高风险用户,结合用户行为分析的差异化干预策略可显著提升用户留存率,为智慧医养平台的运营优化提供了新思路。
Objective: This paper aims to explore user behavior characteristics of smart medical care integration platform and construct a machine learning-based user churn warning model to provide decision support for refined platform operation. Methods: Using user data (n = 1237) from a smart medical care integration platform in Fuyang City, Anhui Province from January 2020 to June 2024 as research subjects, the RFM model was applied to analyze user behavior characteristics. K-means algorithm was used for user clustering, and multiple machine learning models including logistic regression, random forest, and LSTM were constructed for churn warning. Results: Users were predominantly in the 60-79 age group (79.55%), with housekeeping services being the most frequently used service type (50.62%). Four typical user groups were identified, among which low-frequency-low-value users showed the highest churn risk (risk index was 0.68). The LSTM model demonstrated optimal warning performance (AUC = 0.961, accuracy = 0.923) and could predict potential churning users 21 days in advance on average. The time interval since last service use (SHAP value = 0.284) was the most important predictive feature. Intervention measures based on model predictions improved high-risk user retention rate by 32.5%. Conclusion: The machine learning-based churn warning model can effectively identify high-risk users. Differentiated intervention strategies combined with user behavior analysis can significantly improve user retention rates, providing new insights for the operational optimization of smart medical care platforms.
[1] | 曾起艳, 何志鹏, 曾寅初. 老年人居家养老服务需求意愿与行为悖离的原因分析[J]. 人口与经济, 2022(2): 87-103. |
[2] | 初佃辉, 吴军, 刘志中, 等. 智能化医养融合服务平台关键技术及应用研究[J]. 智能系统学报, 2021, 16(5): 972-988. |
[3] | 田平, 翟春晓. 基于老年人需求的智慧养老服务平台的优化研究——以河南省信阳市为例[J]. 商丘职业技术学院学报, 2023, 22(3): 45-51. |
[4] | 白玫, 朱庆华. 老年用户智慧养老服务需求及志愿服务意愿影响因素分析——以武汉市江汉区为例[J]. 现代情报, 2018, 38(12): 3-8. |
[5] | 陈东明, 孙磊, 田庆丰. 河南省农村中老年人社区居家养老服务评价及影响因素分析[J]. 中国初级卫生保健, 2024, 38(7): 1-6. |
[6] | 杜鹏. 中国人口老龄化现状与社会保障体系发展[J]. 社会科学文摘, 2023(7): 8-10. |
[7] | 何振宇, 朱庆华, 白玫. 养老服务视角下城市老年人用户画像构建[J]. 情报杂志, 2021, 40(9): 154-160. |
[8] | 王依明, 李雪, 李斌. 基于老年人需求特征的社区日间照料设施功能复合化策略研究[J]. 现代城市研究, 2021(11): 65-71, 105. |
[9] | 刘文婧. 能力约束与需求偏好: 农村困难老人生活样态与养老服务优化路径研究——以蒙东林县为例[J]. 兰州学刊, 2024(3): 113-131. |
[10] | 肖菲. 智慧养老服务平台市场化运营瓶颈及策略研究——基于湖北省的调查[J]. 湖北社会科学, 2022(5): 64-70. |
[11] | 刘天畅, 王雷, 朱庆华. 基于shap解释方法的智慧居家养老服务平台用户流失预测研究[J]. 数据分析与知识发现, 2024, 8(1): 40-54. |
[12] | 刘天畅, 王艺璇, 张晓宇, 等. 我国智慧养老平台服务生态系统的数据资源需求模型构建研究[J]. 图书情报工作, 2024, 68(16): 3-16. |
[13] | 陈天红, 姬翔. 广东省智慧健康养老服务发展现状、问题及对策研究[J]. 探求, 2023(4): 104-111. |
[14] | 王曼华. 河南省智慧健康养老服务体系构建和优化路径研究[J]. 中国市场, 2023(36): 62-65. |
[15] | 曹袁菲, 潘修华. 南通市智慧居家养老服务的现实困境及其化解对策[J]. 南通职业大学学报, 2023, 37(1): 1-7. |