全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

RBF神经网络与粒子群协同优化的DMC算法
DMC Algorithm with Collaborative Optimization of RBF Neural Network and Particle Swarm Optimization

DOI: 10.12677/sea.2025.142014, PP. 143-154

Keywords: 动态矩阵控制,双阶段优化,径向基神经网络,粒子群算法
Dynamic Matrix Control
, Two-Stage Optimization, Radial Basis Function Neural Network, Particle Swarm Algorithm

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对DMC算法难以精确捕捉和预测复杂系统动态行为的问题,提出一种基于神经网络与粒子群双阶段协同优化DMC算法的策略。首先,在第一阶段中,设计一种基于均值聚类算法和人工鱼群算法的LM-AFSA-RBF神经网络预测模型,利用均值聚类算法确定网络基函数的中心,人工鱼群算法进一步更新网络参数,进而对高度非线性系统进行建模,预测系统的未来输出值,优化DMC算法中原预测模型部分的输出预测值,避免非线性系统下出现模型失配的问题;其次,在第二阶段中,采用引入自适应调整策略的粒子群辨识DMC算法中的控制参数,缩短参数寻优时间,提高系统的响应速度和控制精度;最后,对改进后的DMC预测控制算法进行仿真测试,实验结果验证了双阶段优化策略的可行性和有效性。
Aimed at the problem that it is difficult for the DMC algorithm to accurately capture and predict the dynamic behavior of complex systems, a strategy based on the two-stage collaborative optimization of the DMC algorithm with neural networks and particle swarms is proposed. Firstly, in the first stage, a LM-AFSA-RBF neural network prediction model based on mean clustering algorithm and artificial fish swarm algorithm is designed, the mean clustering algorithm is used to determine the center of the network basis function, and the artificial fish swarm algorithm further updates the network parameters, the network is then used to model highly nonlinear systems, predict the future output values of the system and optimize the output predictions of the original predictive model part of the DMC algorithm, to avoid model mismatch under nonlinear systems; secondly, in the second stage, the particle swarm introducing adaptive adjustment strategy is used to identify the control parameters in the DMC algorithm to shorten the parameter optimization time and improve the response speed and control accuracy of the system; finally, simulation and test are carried out on the optimized DMC predictive control algorithm, the experimental results verify the feasibility and effectiveness of the two-stage optimization strategy.

References

[1]  Hewing, L., Wabersich, K.P., Menner, M. and Zeilinger, M.N. (2020) Learning-Based Model Predictive Control: Toward Safe Learning in Control. Annual Review of Control, Robotics, and Autonomous Systems, 3, 269-296.
https://doi.org/10.1146/annurev-control-090419-075625
[2]  Zhu, Y., Zhang, K., Zhu, Y., Jiang, P. and Zhou, J. (2024) Development of a Three-Term MPC and Its Application to an Ultra-Supercritical Coal Fired Power Plant. Control Engineering Practice, 143, Article 105787.
https://doi.org/10.1016/j.conengprac.2023.105787
[3]  Schwenzer, M., Ay, M., Bergs, T. and Abel, D. (2021) Review on Model Predictive Control: An Engineering Perspective. The International Journal of Advanced Manufacturing Technology, 117, 1327-1349.
https://doi.org/10.1007/s00170-021-07682-3
[4]  Tatjewski, P. (2021) Effectiveness of Dynamic Matrix Control Algorithm with Laguerre Functions. Archives of Control Sciences, 31, 795-814.
[5]  Xu, X., Simkoff, J.M., Baldea, M., Chiang, L.H., Castillo, I., Bindlish, R., et al. (2020) Data‐Driven Plant‐Model Mismatch Estimation for Dynamic Matrix Control Systems. International Journal of Robust and Nonlinear Control, 30, 7103-7129.
https://doi.org/10.1002/rnc.5162
[6]  苏尹. 基于递归小波神经网络的污水处理过程智能控制方法研究[D]: [博士学位论文]. 北京: 北京工业大学, 2023.
[7]  Tavoosi, J. and Mohammadzadeh, A. (2021) A New Recurrent Radial Basis Function Network-Based Model Predictive Control for a Power Plant Boiler Temperature Control. International Journal of Engineering, 34, 667-675.
[8]  Li, S., Jiang, P. and Han, K. (2019) RBF Neural Network Based Model Predictive Control Algorithm and Its Application to a CSTR Process. 2019 Chinese Control Conference (CCC), Guangzhou, 27-30 July 2019, 2948-2952.
https://doi.org/10.23919/chicc.2019.8865797
[9]  Chen, L., Du, S., He, Y., Liang, M. and Xu, D. (2018) Robust Model Predictive Control for Greenhouse Temperature Based on Particle Swarm Optimization. Information Processing in Agriculture, 5, 329-338.
https://doi.org/10.1016/j.inpa.2018.04.003
[10]  叶豪杰, 李文娜. 基于PSO的管式加热炉热效率动态矩阵控制[J]. 辽宁石油化工大学学报, 2023, 43(3): 81-85.
[11]  Wang, Y., Cheng, Y., Xiong, Y. and Yan, Q. (2022) Estimation of Battery Open-Circuit Voltage and State of Charge Based on Dynamic Matrix Control-Extended Kalman Filter Algorithm. Journal of Energy Storage, 52, Article ID: 104860.
https://doi.org/10.1016/j.est.2022.104860
[12]  Shen, B., Gao, S., Yin, F.F., et al. (2023) A PLC Implementation of Dynamic Matrix Predictive Control. China Mining Magazine, 32, 83-86.
[13]  王凯. 基于RBF神经网络模型动态矩阵预测控制的小麦着水系统设计和应用[J]. 南方农机, 2022, 53(5): 48-52.
[14]  刘文杰. 结合神经网络和DMC的过热汽温控制仿真研究[D]: [硕士学位论文]. 北京: 华北电力大学, 2021.
[15]  陈志勇, 李攀, 叶明旭, 等. 自动驾驶电动车辆基于参数预测的径向基函数神经网络自适应控制[J]. 中国机械工程, 2024, 35(6): 982-992.
[16]  魏立新, 张峻林, 刘青松. 基于改进人工鱼群算法的神经网络优化[J]. 控制工程, 2014, 21(1): 84-87, 93.
[17]  黄丽华, 李俊丽. 基于改进人工鱼群算法优化的BP神经网络预测控制系统[J]. 化工自动化及仪表, 2019, 46(8): 610-614.
[18]  Torchio, M., Wolff, N.A., Raimondo, D.M., Magni, L., Krewer, U., Gopaluni, R.B., et al. (2015) Real-Time Model Predictive Control for the Optimal Charging of a Lithium-Ion Battery. 2015 American Control Conference (ACC), Chicago, 1-3 July 2015, 4536-4541.
https://doi.org/10.1109/acc.2015.7172043
[19]  张龙, 陈传奇, 张凯文. 基于自适应混沌粒子群算法的冷却剂平均温度预测控制[J]. 计算机应用与软件, 2023, 40(11): 80-86.
[20]  李凯, 肖熙, 董山恒, 等. 基于改进粒子群算法的智能排产研究[J]. 制造业自动化, 2023, 45(2): 214-216.
[21]  杨迪, 刘思源, 王鹏, 等. 基于多策略粒子群优化RBF的云资源预测模型[J]. 计算机工程与设计, 2023, 44(4): 1073-1080.
[22]  马青鹏. 基于改进粒子群算法的预测控制算法的应用研究[D]: [硕士学位论文]. 北京: 华北电力大学, 2020.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133