|
基于力和角度实时采集的踝泵运动监测系统设计
|
Abstract:
踝泵运动是一种临床患者进行血栓预防和康复训练的重要手段,指导患者进行正确的踝泵运动不仅可以大大降低下肢静脉血栓栓塞的发生,而且可以加快患者康复进程。目前,实际康复治疗中,由于缺乏对病人踝泵运动情况的有效监测,在对康复训练过程和效果无法掌握情况下,往往无法制定出最佳康复训练计划。因此,本文设计了一种基于力和角度的踝泵运动实时监测系统,来解决以上问题。该运动监测系统采用ESP32实时采集压力传感器和姿态传感器的数据,同时利用无线方式发送到上位机,在上位机通过对数据的相应处理,得出踝泵训练过程中足底用力和踝关节角度变化情况。试验结果表明,该监测系统通过采集力与角度的实时变化,可以实现踝泵运动的有效监控。
Ankle pump exercise is an important method for preventing thrombosis and promoting rehabilitation in clinical patients. Guiding patients to perform proper ankle pump exercises can significantly reduce the occurrence of lower limb venous thromboembolism and accelerate the recovery process. However, in current rehabilitation treatments, due to the lack of effective monitoring of patients’ ankle pump exercise activities, it is often difficult to develop the optimal rehabilitation plan when the training process and outcomes are not well understood. Therefore, this paper designs a real-time monitoring system for ankle pump exercise based on force and angle, aiming to address the above issues. The system utilizes an ESP32 microcontroller to collect real-time data from pressure sensors and posture sensors. The collected data is wirelessly transmitted to an upper computer, where it is processed to analyze changes in plantar force and ankle joint angles during ankle pump exercises. Experimental results show that this monitoring system effectively monitors ankle pump exercises by capturing the real-time changes in force and angle.
[1] | 孙艳, 毛菊花, 李小雪, 等. 踝泵运动器对预防DVT促进下肢静脉回流的影响——评《运动医学手术技术: 足与踝》[J]. 中国实验方剂学杂志, 2023, 29(19): 266. |
[2] | 李丽娟, 董晓莺, 陈清丽, 等. 踝泵运动对预防髋部骨折术后下肢血栓形成的效果[J]. 实用骨科杂志, 2011, 17(5): 478-480. |
[3] | 潘麒羽, 刘尚芹. 踝泵运动护理对剖宫产患者术后下肢深静脉血栓形成的预防作用[J]. 实用临床医药杂志, 2014, 18(24): 213-214. |
[4] | 耿艳莉, 龚云. 早期踝泵运动预防TURP术后下肢深静脉血栓形成[J]. 护理学杂志, 2014, 29(14): 34-35. |
[5] | 于秀丽, 朴丽, 丛云凤, 等. 量化踝泵运动降低妇科肿瘤患者术后下肢静脉血栓发生的临床研究[J]. 护理实践与研究, 2016, 13(13): 120-121. |
[6] | Zhang, L., Zhu, X., Gutierrez-Farewik, E.M. and Wang, R. (2022) Ankle Joint Torque Prediction Using an NMS Solver Informed-Ann Model and Transfer Learning. IEEE Journal of Biomedical and Health Informatics, 26, 5895-5906. https://doi.org/10.1109/jbhi.2022.3207313 |
[7] | Suzuki, K., Okamoto, S., Akiyama, Y., Shiraishi, Y., Yamada, N. and Yamada, Y. (2021) Alignment of Anatomical Flexion Axis When Using One-Degree-of-Freedom Ankle Stretching Exerciser. 2021 IEEE 3rd Global Conference on Life Sciences and Technologies (Life Tech), Nara, 9-11 March 2021, 61-63. https://doi.org/10.1109/lifetech52111.2021.9391954 |
[8] | Xu, C., Zhou, Y., Ji, J. and Wei, C. (2023) An Ankle Joint Flexion and Extension Movement-Monitoring Device Based on Pressure Sensors. Micromachines, 14, Article 2141. https://doi.org/10.3390/mi14122141 |
[9] | 段学习, 王蕴岭, 汪琦. 基于MSP430的踝关节康复受力监测系统[J]. 控制工程, 2010, 17(S3): 166-168+172. |
[10] | Banky, M., Williams, G., Davey, R. and Tirosh, O. (2022) Inertia Sensors for Measuring Spasticity of the Ankle Plantarflexors Using the Modified Tardieu Scale—A Proof of Concept Study. Sensors, 22, Article 5151. https://doi.org/10.3390/s22145151 |
[11] | Dao, D.M., Phuoc, P.D. and Tuy, T.X. (2022) Research Control for Ankle Joint Rehabilitation Device. Journal of Mechanical Engineering and Sciences, 16, 8743-8753. https://doi.org/10.15282/jmes.16.1.2022.08.0691 |
[12] | 丁缪辰, 吴怡雯, 郑雨雯. 踝泵运动预防老年患者下肢深静脉血栓形成的研究进展[J]. 中国疗养医学, 2024, 33(11): 87-90. |