全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Pt-Ni-Cu纳米笼的合成与高效氧还原电催化
Synthesis of Pt-Ni-Cu Nanocages for Efficient Oxygen Reduction Electrocatalysis

DOI: 10.12677/ms.2025.154060, PP. 550-561

Keywords: 纳米笼,PtNiCu,三元合金,氧还原反应,电催化
Nanocage
, PtNiCu, Ternary Alloy, Oxygen Reduction Reaction, Electrocatalysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

控制Pt基纳米材料的表面、形状和组成可显著提升氧还原反应的催化性能。由超薄纳米片构成的基于Pt的纳米笼,作为一种新型高效催化剂,具有较高的Pt原子利用率。然而,如何通过简单策略设计多金属纳米笼以扩展催化剂的组成空间仍然是一个挑战。在此,我们提出将溶剂热合成法与室温下的保形腐蚀相结合,实现了壁厚仅为7原子层的Pt-Ni-Cu三元纳米笼的合成。此外,通过调控表面活性剂,能有效控制Pt-Ni-Cu三元纳米笼的结构。由于其独特的结构与组成,Pt-Ni-Cu三元纳米笼在氧还原反应(ORR)中展现出优异的质量活性,0.9 V时质量活性为1411 mA·mgPt?1,是商业Pt/C催化剂的9.0倍,优于近期报道的Pt基纳米笼。
Controlling the surface, shape, and composition of Pt-based nanomaterials can greatly boost oxygen reduction catalysis. Pt-based nanocages composed of ultrathin nanosheets have emerged as a new class of efficient catalysts with high atomic utilization efficiency of Pt. However, engineering multimetallic nanocages via facile strategies still remains a challenge to extend compositional space for catalyst development. Here, this work achieves the synthesis of Pt-Ni-Cu ternary nanocages with walls as thin as 7 atomic layers, by developing a general strategy that combines the solvothermal synthesis of highly composition segregated nanocrystals with the conformal corrosion at room temperature. In addition, the structure of Pt-Ni-Cu ternary nanocages can be well controlled by simply changing the surfactants. Benefiting from their unique structure and composition, the Pt-Ni-Cu ternary nanocages exhibit superior mass activity towards oxygen reduction reaction (ORR), with a value of 1411 mA·mgPt?1 at 0.9 V, which is 9.0 times higher than that of commercial Pt/C catalyst and outperforms the recently reported Pt-based nanocages.

References

[1]  Yoshida, T. and Kojima, K. (2015) Toyota MIRAI Fuel Cell Vehicle and Progress toward a Future Hydrogen Society. The Electrochemical Society Interface, 24, 45-49.
https://doi.org/10.1149/2.f03152if

[2]  Banham, D. and Ye, S. (2017) Current Status and Future Development of Catalyst Materials and Catalyst Layers for Proton Exchange Membrane Fuel Cells: An Industrial Perspective. ACS Energy Letters, 2, 629-638.
https://doi.org/10.1021/acsenergylett.6b00644

[3]  Kongkanand, A. and Mathias, M.F. (2016) The Priority and Challenge of High-Power Performance of Low-Platinum Proton-Exchange Membrane Fuel Cells. The Journal of Physical Chemistry Letters, 7, 1127-1137.
https://doi.org/10.1021/acs.jpclett.6b00216

[4]  Zhang, L., Roling, L.T., Wang, X., Vara, M., Chi, M., Liu, J., et al. (2015) Platinum-Based Nanocages with Subnanometer-Thick Walls and Well-Defined, Controllable Facets. Science, 349, 412-416.
https://doi.org/10.1126/science.aab0801

[5]  Chen, C., Kang, Y., Huo, Z., Zhu, Z., Huang, W., Xin, H.L., et al. (2014) Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces. Science, 343, 1339-1343.
https://doi.org/10.1126/science.1249061

[6]  Li, M., Zhao, Z., Cheng, T., Fortunelli, A., Chen, C., Yu, R., et al. (2016) Ultrafine Jagged Platinum Nanowires Enable Ultrahigh Mass Activity for the Oxygen Reduction Reaction. Science, 354, 1414-1419.
https://doi.org/10.1126/science.aaf9050

[7]  Bu, L., Zhang, N., Guo, S., Zhang, X., Li, J., Yao, J., et al. (2016) Biaxially Strained PtPb/Pt Core/Shell Nanoplate Boosts Oxygen Reduction Catalysis. Science, 354, 1410-1414.
https://doi.org/10.1126/science.aah6133

[8]  Debe, M.K., Steinbach, A.J., Vernstrom, G.D., Hendricks, S.M., Kurkowski, M.J., Atanasoski, R.T., et al. (2011) Extraordinary Oxygen Reduction Activity of Pt3Ni7. Journal of The Electrochemical Society, 158, B910.
https://doi.org/10.1149/1.3595748

[9]  Zhu, H., Zhang, S., Guo, S., Su, D. and Sun, S. (2013) Synthetic Control of FePtM Nanorods (M = Cu, Ni) to Enhance the Oxygen Reduction Reaction. Journal of the American Chemical Society, 135, 7130-7133.
https://doi.org/10.1021/ja403041g

[10]  Bu, L., Guo, S., Zhang, X., Shen, X., Su, D., Lu, G., et al. (2016) Surface Engineering of Hierarchical Platinum-Cobalt Nanowires for Efficient Electrocatalysis. Nature Communications, 7, Article No. 11850.
https://doi.org/10.1038/ncomms11850

[11]  Tian, N., Zhou, Z., Sun, S., Ding, Y. and Wang, Z.L. (2007) Synthesis of Tetrahexahedral Platinum Nanocrystals with High-Index Facets and High Electro-Oxidation Activity. Science, 316, 732-735.
https://doi.org/10.1126/science.1140484

[12]  Saleem, F., Zhang, Z., Xu, B., Xu, X., He, P. and Wang, X. (2013) Ultrathin Pt-Cu Nanosheets and Nanocones. Journal of the American Chemical Society, 135, 18304-18307.
https://doi.org/10.1021/ja4101968

[13]  Yu, X., Wang, D., Peng, Q. and Li, Y. (2011) High Performance Electrocatalyst: Pt-Cu Hollow Nanocrystals. Chemical Communications, 47, 8094.
https://doi.org/10.1039/c1cc12416a

[14]  Gilroy, K.D., Ruditskiy, A., Peng, H., Qin, D. and Xia, Y. (2016) Bimetallic Nanocrystals: Syntheses, Properties, and Applications. Chemical Reviews, 116, 10414-10472.
https://doi.org/10.1021/acs.chemrev.6b00211

[15]  Luo, S., Tang, M., Shen, P.K. and Ye, S. (2017) Atomic‐Scale Preparation of Octopod Nanoframes with High‐Index Facets as Highly Active and Stable Catalysts. Advanced Materials, 29, Article 1601687.
https://doi.org/10.1002/adma.201601687

[16]  Peng, X., Zhao, S., Omasta, T.J., Roller, J.M. and Mustain, W.E. (2017) Activity and Durability of Pt-Ni Nanocage Electocatalysts in Proton Exchange Membrane Fuel Cells. Applied Catalysis B: Environmental, 203, 927-935.
https://doi.org/10.1016/j.apcatb.2016.10.081

[17]  He, D.S., He, D., Wang, J., Lin, Y., Yin, P., Hong, X., et al. (2016) Ultrathin Icosahedral Pt-Enriched Nanocage with Excellent Oxygen Reduction Reaction Activity. Journal of the American Chemical Society, 138, 1494-1497.
https://doi.org/10.1021/jacs.5b12530

[18]  Xia, B.Y., Wu, H.B., Wang, X. and Lou, X.W. (2012) One-Pot Synthesis of Cubic PtCU3 Nanocages with Enhanced Electrocatalytic Activity for the Methanol Oxidation Reaction. Journal of the American Chemical Society, 134, 13934-13937.
https://doi.org/10.1021/ja3051662

[19]  Yang, X., Roling, L.T., Vara, M., Elnabawy, A.O., Zhao, M., Hood, Z.D., et al. (2016) Synthesis and Characterization of Pt-Ag Alloy Nanocages with Enhanced Activity and Durability toward Oxygen Reduction. Nano Letters, 16, 6644-6649.
https://doi.org/10.1021/acs.nanolett.6b03395

[20]  Wang, X., Figueroa-Cosme, L., Yang, X., Luo, M., Liu, J., Xie, Z., et al. (2016) Pt-Based Icosahedral Nanocages: Using a Combination of {111} Facets, Twin Defects, and Ultrathin Walls to Greatly Enhance Their Activity toward Oxygen Reduction. Nano Letters, 16, 1467-1471.
https://doi.org/10.1021/acs.nanolett.5b05140

[21]  Chen, W., Luo, S., Sun, M., Wu, X., Zhou, Y., Liao, Y., et al. (2022) High‐Entropy Intermetallic PtRhBiSnSb Nanoplates for Highly Efficient Alcohol Oxidation Electrocatalysis. Advanced Materials, 34, Article 2206276.
https://doi.org/10.1002/adma.202206276

[22]  Fan, X., Chen, W., Xie, L., Liu, X., Ding, Y., Zhang, L., et al. (2024) Surface‐Enriched Single‐Bi‐Atoms Tailoring of Pt Nanorings for Direct Methanol Fuel Cells with Ultralow‐Pt‐Loading. Advanced Materials, 36, Article 2313179.
https://doi.org/10.1002/adma.202313179

[23]  Tang, M., Sun, M., Chen, W., Ding, Y., Fan, X., Wu, X., et al. (2024) Atomic Diffusion Engineered PtSnCu Nanoframes with High‐Index Facets Boost Ethanol Oxidation. Advanced Materials, 36, Article 2311731.
https://doi.org/10.1002/adma.202311731

[24]  Wang, D., Xin, H.L., Hovden, R., Wang, H., Yu, Y., Muller, D.A., et al. (2013) Structurally Ordered Intermetallic Platinum-Cobalt Core-Shell Nanoparticles with Enhanced Activity and Stability as Oxygen Reduction Electrocatalysts. Nature Materials, 12, 81-87.
https://doi.org/10.1038/nmat3458

[25]  Stamenkovic, V.R., Fowler, B., Mun, B.S., Wang, G., Ross, P.N., Lucas, C.A., et al. (2007) Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability. Science, 315, 493-497.
https://doi.org/10.1126/science.1135941

[26]  Strasser, P., Koh, S., Anniyev, T., Greeley, J., More, K., Yu, C., et al. (2010) Lattice-Strain Control of the Activity in Dealloyed Core-Shell Fuel Cell Catalysts. Nature Chemistry, 2, 454-460.
https://doi.org/10.1038/nchem.623

[27]  Noh, S.H., Han, B. and Ohsaka, T. (2015) First-Principles Computational Study of Highly Stable and Active Ternary Ptcuni Nanocatalyst for Oxygen Reduction Reaction. Nano Research, 8, 3394-3403.
https://doi.org/10.1007/s12274-015-0839-2

[28]  Beermann, V., Gocyla, M., Willinger, E., Rudi, S., Heggen, M., Dunin-Borkowski, R.E., et al. (2016) Rh-Doped Pt-Ni Octahedral Nanoparticles: Understanding the Correlation between Elemental Distribution, Oxygen Reduction Reaction, and Shape Stability. Nano Letters, 16, 1719-1725.
https://doi.org/10.1021/acs.nanolett.5b04636

[29]  Zhang, P., Dai, X., Zhang, X., Chen, Z., Yang, Y., Sun, H., et al. (2015) One-Pot Synthesis of Ternary Pt-Ni-Cu Nanocrystals with High Catalytic Performance. Chemistry of Materials, 27, 6402-6410.
https://doi.org/10.1021/acs.chemmater.5b02575

[30]  Saleem, F., Ni, B., Yong, Y., Gu, L. and Wang, X. (2016) Ultra-Small Tetrametallic Pt-Pd-Rh-Ag Nanoframes with Tunable Behavior for Direct Formic Acid/Methanol Oxidation. Small, 12, 5261-5268.
https://doi.org/10.1002/smll.201601299

[31]  Gan, L., Cui, C., Heggen, M., Dionigi, F., Rudi, S. and Strasser, P. (2014) Element-Specific Anisotropic Growth of Shaped Platinum Alloy Nanocrystals. Science, 346, 1502-1506.
https://doi.org/10.1126/science.1261212

[32]  Cui, C., Gan, L., Heggen, M., Rudi, S. and Strasser, P. (2013) Compositional Segregation in Shaped Pt Alloy Nanoparticles and Their Structural Behaviour during Electrocatalysis. Nature Materials, 12, 765-771.
https://doi.org/10.1038/nmat3668

[33]  Carpenter, M.K., Moylan, T.E., Kukreja, R.S., Atwan, M.H. and Tessema, M.M. (2012) Solvothermal Synthesis of Platinum Alloy Nanoparticles for Oxygen Reduction Electrocatalysis. Journal of the American Chemical Society, 134, 8535-8542.
https://doi.org/10.1021/ja300756y

[34]  Muzart, J. (2009) N,N-Dimethylformamide: Much More than a Solvent. Tetrahedron, 65, 8313-8323.
https://doi.org/10.1016/j.tet.2009.06.091

[35]  Bai, S., Wang, C., Jiang, W., Du, N., Li, J., Du, J., et al. (2015) Etching Approach to Hybrid Structures of PtPd Nanocages and Graphene for Efficient Oxygen Reduction Reaction Catalysts. Nano Research, 8, 2789-2799.
https://doi.org/10.1007/s12274-015-0770-6

[36]  Kang, Y., Snyder, J., Chi, M., Li, D., More, K.L., Markovic, N.M., et al. (2014) Multimetallic Core/Interlayer/Shell Nanostructures as Advanced Electrocatalysts. Nano Letters, 14, 6361-6367.
https://doi.org/10.1021/nl5028205

[37]  Wang, K., Sriphathoorat, R., Luo, S., Tang, M., Du, H. and Shen, P.K. (2016) Ultrathin PtCu Hexapod Nanocrystals with Enhanced Catalytic Performance for Electro-Oxidation Reactions. Journal of Materials Chemistry A, 4, 13425-13430.
https://doi.org/10.1039/c6ta05230d

[38]  Mourdikoudis, S. and Liz-Marzán, L.M. (2013) Oleylamine in Nanoparticle Synthesis. Chemistry of Materials, 25, 1465-1476.
https://doi.org/10.1021/cm4000476

[39]  Kong, F., Liu, S., Li, J., Du, L., Banis, M.N., Zhang, L., et al. (2019) Trimetallic Pt-Pd-Ni Octahedral Nanocages with Subnanometer Thick-Wall towards High Oxygen Reduction Reaction. Nano Energy, 64, Article 103890.
https://doi.org/10.1016/j.nanoen.2019.103890

[40]  Tian, X., Zhao, X., Su, Y., Wang, L., Wang, H., Dang, D., et al. (2019) Engineering Bunched Pt-Ni Alloy Nanocages for Efficient Oxygen Reduction in Practical Fuel Cells. Science, 366, 850-856.
https://doi.org/10.1126/science.aaw7493

[41]  Zhu, J., Chen, Z., Xie, M., Lyu, Z., Chi, M., Mavrikakis, M., et al. (2019) Iridium‐Based Cubic Nanocages with 1.1‐nm‐Thick Walls: A Highly Efficient and Durable Electrocatalyst for Water Oxidation in an Acidic Medium. Angewandte Chemie International Edition, 58, 7244-7248.
https://doi.org/10.1002/anie.201901732

[42]  Zhu, J., Xie, M., Chen, Z., Lyu, Z., Chi, M., Jin, W., et al. (2020) Pt‐Ir‐Pd Trimetallic Nanocages as a Dual Catalyst for Efficient Oxygen Reduction and Evolution Reactions in Acidic Media. Advanced Energy Materials, 10, Article 1904114.
https://doi.org/10.1002/aenm.201904114

[43]  Zhu, J., Xu, L., Lyu, Z., Xie, M., Chen, R., Jin, W., et al. (2021) Janus Nanocages of Platinum‐Group Metals and Their Use as Effective Dual‐Electrocatalysts. Angewandte Chemie International Edition, 60, 10384-10392.
https://doi.org/10.1002/anie.202102275

[44]  Zheng, Y., Petersen, A.S., Wan, H., Hübner, R., Zhang, J., Wang, J., et al. (2023) Scalable and Controllable Synthesis of Pt‐Ni Bunched‐Nanocages Aerogels as Efficient Electrocatalysts for Oxygen Reduction Reaction. Advanced Energy Materials, 13, Article 2204257.
https://doi.org/10.1002/aenm.202204257

[45]  Ding, H., Su, C., Wu, J., Lv, H., Tan, Y., Tai, X., et al. (2024) Highly Crystalline Iridium-Nickel Nanocages with Subnanopores for Acidic Bifunctional Water Splitting Electrolysis. Journal of the American Chemical Society, 146, 7858-7867.
https://doi.org/10.1021/jacs.4c01379

[46]  Mahmoud, M.A., Saira, F. and El-Sayed, M.A. (2010) Experimental Evidence for the Nanocage Effect in Catalysis with Hollow Nanoparticles. Nano Letters, 10, 3764-3769.
https://doi.org/10.1021/nl102497u

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133