全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于可视化监测的自动采果作业系统设计与控制研究
Study on Design and Control of an Automated Fruit Harvesting System Based on Visual Monitoring

DOI: 10.12677/dsc.2025.142008, PP. 67-76

Keywords: 机器视觉,人工智能,图像处理,自动化技术
Machine Vision
, Artificial Intelligence, Image Processing, Automation Technology

Full-Text   Cite this paper   Add to My Lib

Abstract:

本研究旨在开发一种可视化监测的自动采果作业系统,通过整合Pixy CMUcam5视觉模块、SG-90微型伺服马达、MG996伺服马达和Futaba S148连续旋转型伺服马达等关键组件,并利用Arduino Mega控制板实现机构间运动的精确协调。通过坐标转换方法简化了果实定位问题,并结合柔性旗鱼式爪指设计,研发了三爪式夹爪作为西红柿采收的工具。通过实验分析,确定1.40 kgf的平均穿刺力作为最大夹取力的基准,夹爪上贴附的薄膜式力量传感器能够直接测量手指与果实间的力量,模拟测试显示最大夹持力为0.70 kgf,且夹取试验结果表明夹取动作对番茄造成的损伤极小。此外,本研究还测试了三种不同摩擦力材料的拉力和拉拔力,为后续夹爪材料的选择提供依据,为自动化采摘技术的发展提供重要的理论和实践基础。
This study aims to develop an automated fruit harvesting system with visual monitoring capabilities by integrating key components such as the Pixy CMUcam5 vision module, SG-90 micro servo motor, MG996 servo motor, and Futaba S148 continuous rotation servo motor, and utilizing an Arduino Mega control board to achieve precise coordination of movements between mechanisms. The problem of fruit positioning was simplified using coordinate transformation methods, and a three-fingered gripper with a flexible flag fish-style claw design was developed as a tool for tomato harvesting. Experimental analysis determined an average penetration force of 1.40 kgf as the benchmark for maximum clamping force. The thin-film force sensor attached to the gripper can directly measure the force between the fingers and the fruit, and simulation tests showed a maximum clamping force of 0.70 kgf, and the results of the clamping test showed that the clamping action caused very little damage to the tomato. Additionally, this study tested the tensile and pulling forces of three different friction materials to provide a basis for the selection of gripper materials in the future, offering important theoretical and practical foundations for the development of automated harvesting technology.

References

[1]  陈青, 殷程凯, 郭自良, 等. 苹果采摘机器人关键技术研究现状与发展趋势[J]. 农业工程学报, 2023, 39(4): 1-15.
[2]  高自成, 庞国友, 李立君, 等. 手动背负夹爪式简易梨采摘器研制[J]. 农业工程学报, 2019, 35(1): 39-45.
[3]  熊俊涛, 叶敏, 邹湘军, 等. 多类型水果采摘机器人系统设计与性能分析[J]. 农业机械学报, 2013, 44(S1): 230-235.
[4]  郭自良, 殷程凯, 吴玄博, 等. 水果采摘机械手关键技术研究现状与展望[J]. 江苏农业学报, 2024, 40(6): 1142-1152.
[5]  Chung, J., You, H., Kim, H., Lee, B., Park, S. and Yoon, E. (2015) A Novel Technique for Robot Assisted Latissimus Dorsi Flap Harvest. Journal of Plastic, Reconstructive & Aesthetic Surgery, 68, 966-972.
https://doi.org/10.1016/j.bjps.2015.03.021
[6]  Lemsalu, M., Bloch, V., Backman, J. and Pastell, M. (2022) Real-Time CNN-Based Computer Vision System for Open-Field Strawberry Harvesting Robot. IFAC-PapersOnLine, 55, 24-29.
https://doi.org/10.1016/j.ifacol.2022.11.109
[7]  黄才贵. 基于机器视觉的百香果采摘分级机器人平台的设计[J]. 农业技术与装备, 2022(1): 54-56.
[8]  张卫卫, 席文奎, 徐慧斌, 等. 感应式电动采果器的设计[J]. 中国农机化学报, 2018, 39(10): 38-40, 70.
[9]  张静, 韩东亚, 宋洋, 等. 基于负压式苹果采摘机器人末端设计及仿真[J]. 液压气动与密封, 2024, 44(1): 39-46.
[10]  赵子葳. 果实采摘机器人视觉系统的研究与设计[D]: [硕士学位论文]. 长春: 长春理工大学, 2020.
[11]  张跃跃, 田嘉全, 王文祥, 等. 火龙果采摘机器人末端执行器设计与试验[J]. 林业工程学报, 2023, 8(4): 144-150.
[12]  黄才贵, 蒋正忠, 李岩舟. 一种高枝水果采摘头的设计分析[J]. 机械设计与研究, 2021, 37(4): 188-191, 197.
[13]  华超, 褚凯梅, 陈昕, 等. 软体水果采摘机械手系统设计分析与试验[J]. 林业工程学报, 2021, 6(3): 127-132.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133