|
外泌体MicroRNA在银屑病中的研究进展
|
Abstract:
外泌体来源的MicroRNA已被证实具有一定的特异性,通过调控信号通路、释放或抑制炎症因子、参与角质形成细胞的增殖和凋亡等方式参与银屑病的发生发展过程。本文主要论述了外泌体MicroRNA在银屑病的发病机制和潜在能力的相关研究进展。
Exosome-derived MicroRNAs have been shown to have certain specificity and participate in the process of psoriasis development by regulating signaling pathways, releasing or inhibiting inflammatory factors, and participating in the proliferation and apoptosis of keratinocytes. This paper mainly discusses the research progress related to the pathogenesis and potential ability of exosomal MicroRNAs in psoriasis.
[1] | Rendon, A. and Schäkel, K. (2019) Psoriasis Pathogenesis and Treatment. International Journal of Molecular Sciences, 20, Article 1475. https://doi.org/10.3390/ijms20061475 |
[2] | Parisi, R., Iskandar, I.Y.K., Kontopantelis, E., Augustin, M., Griffiths, C.E.M. and Ashcroft, D.M. (2020) National, Regional, and Worldwide Epidemiology of Psoriasis: Systematic Analysis and Modelling Study. BMJ, 369, m1590. https://doi.org/10.1136/bmj.m1590 |
[3] | Wang, K., Zhao, Y. and Cao, X. (2024) Global Burden and Future Trends in Psoriasis Epidemiology: Insights from the Global Burden of Disease Study 2019 and Predictions to 2030. Archives of Dermatological Research, 316, Article No. 114. https://doi.org/10.1007/s00403-024-02846-z |
[4] | Iskandar, I.Y.K., Parisi, R., Griffiths, C.E.M. and Ashcroft, D.M. (2020) Systematic Review Examining Changes over Time and Variation in the Incidence and Prevalence of Psoriasis by Age and Gender. British Journal of Dermatology, 184, 243-258. https://doi.org/10.1111/bjd.19169 |
[5] | Gao, Y., Xu, T., Wang, Y., Hu, Y., Yin, S., Qin, Z., et al. (2025) Pathophysiology and Treatment of Psoriasis: From Clinical Practice to Basic Research. Pharmaceutics, 17, Article 56. https://doi.org/10.3390/pharmaceutics17010056 |
[6] | Yu, D., Li, Y., Wang, M., Gu, J., Xu, W., Cai, H., et al. (2022) Exosomes as a New Frontier of Cancer Liquid Biopsy. Molecular Cancer, 21, Article No. 56. https://doi.org/10.1186/s12943-022-01509-9 |
[7] | Lin, S., Yu, Z., Chen, D., Wang, Z., Miao, J., Li, Q., et al. (2019) Progress in Microfluidics‐Based Exosome Separation and Detection Technologies for Diagnostic Applications. Small, 16, e1903916. https://doi.org/10.1002/smll.201903916 |
[8] | Kalluri, R. and LeBleu, V.S. (2020) The Biology, Function, and Biomedical Applications of Exosomes. Science, 367, eaau6977. https://doi.org/10.1126/science.aau6977 |
[9] | Ramshani, Z., Zhang, C., Richards, K., Chen, L., Xu, G., Stiles, B.L., et al. (2019) Extracellular Vesicle MicroRNA Quantification from Plasma Using an Integrated Microfluidic Device. Communications Biology, 2, Article No. 189. https://doi.org/10.1038/s42003-019-0435-1 |
[10] | Aldabbas, R., Shaker, O.G., Ismail, M.F. and Fathy, N. (2022) miRNA-559 and MTDH as Possible Diagnostic Markers of Psoriasis: Role of PTEN/AKT/FOXO Pathway in Disease Pathogenesis. Molecular and Cellular Biochemistry, 478, 1427-1438. https://doi.org/10.1007/s11010-022-04599-7 |
[11] | Tokić, S., Jirouš, M., Plužarić, V., Mihalj, M., Šola, M., Tolušić Levak, M., et al. (2023) The miR-20a/miR-92b Profile Is Associated with Circulating γδ T-Cell Perturbations in Mild Psoriasis. International Journal of Molecular Sciences, 24, Article 4323. https://doi.org/10.3390/ijms24054323 |
[12] | De Logu, F., Maglie, R., Titiz, M., Poli, G., Landini, L., Marini, M., et al. (2023) miRNA-203b-3p Induces Acute and Chronic Pruritus through 5-HTR2B and TRPV4. Journal of Investigative Dermatology, 143, 142-153.e10. https://doi.org/10.1016/j.jid.2022.08.034 |
[13] | Théry, C., Witwer, K.W., Aikawa, E., et al. (2018) Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV2018): A Position Statement of the International Society for Extracellular Vesicles and Update of the MISEV2014 Guidelines. Journal of Extracellular Vesicles, 7, Article ID: 1535750. |
[14] | Rohm, T.V., Cunha e Rocha, K. and Olefsky, J.M. (2025) Metabolic Messengers: Small Extracellular Vesicles. Nature Metabolism, 7, 253-262. https://doi.org/10.1038/s42255-024-01214-5 |
[15] | Peter, M.E. (2010) Targeting of mRNAs by Multiple miRNAs: The Next Step. Oncogene, 29, 2161-2164. https://doi.org/10.1038/onc.2010.59 |
[16] | Catalanotto, C., Cogoni, C. and Zardo, G. (2016) MicroRNA in Control of Gene Expression: An Overview of Nuclear Functions. International Journal of Molecular Sciences, 17, Article 1712. https://doi.org/10.3390/ijms17101712 |
[17] | Muraoka, A., Yokoi, A., Yoshida, K., Kitagawa, M., Bayasula, Murakami, M., et al. (2025) Serum-Derived Small Extracellular Vesicles as Biomarkers for Predicting Pregnancy and Delivery on Assisted Reproductive Technology in Patients with Endometriosis. Frontiers in Endocrinology, 15, Article 1442684. https://doi.org/10.3389/fendo.2024.1442684 |
[18] | Endzeliņš, E., Berger, A., Melne, V., Bajo-Santos, C., Soboļevska, K., Ābols, A., et al. (2017) Detection of Circulating Mirnas: Comparative Analysis of Extracellular Vesicle-Incorporated miRNAs and Cell-Free miRNAs in Whole Plasma of Prostate Cancer Patients. BMC Cancer, 17, Article No. 730. https://doi.org/10.1186/s12885-017-3737-z |
[19] | Andreu, Z., Rivas, E., Sanguino‐Pascual, A., Lamana, A., Marazuela, M., González‐Alvaro, I., et al. (2016) Comparative Analysis of EV Isolation Procedures for miRNAs Detection in Serum Samples. Journal of Extracellular Vesicles, 5, Article ID: 31655. https://doi.org/10.3402/jev.v5.31655 |
[20] | Woźniak, E., Owczarczyk-Saczonek, A. and Placek, W. (2021) Psychological Stress, Mast Cells, and Psoriasis—Is There Any Relationship? International Journal of Molecular Sciences, 22, Article 13252. https://doi.org/10.3390/ijms222413252 |
[21] | Li, Q., Marcoux, G., Hu, Y., Rebetz, J., Guo, L., Semple, E., et al. (2024) Autoimmune Effector Mechanisms Associated with a Defective Immunosuppressive Axis in Immune Thrombocytopenia (ITP). Autoimmunity Reviews, 23, Article ID: 103677. https://doi.org/10.1016/j.autrev.2024.103677 |
[22] | An, Y., Zhang, Q., Ren, Y., Yang, S. and Zhang, Q. (2024) BML-111 Modulates and Alleviates p38/MAPK Signaling Pathway and Th1/Th2/Th17 Cytokine Response in Murine Psoriasis-Like Dermatitis. Discovery Medicine, 36, 2026-2036. https://doi.org/10.24976/discov.med.202436189.186 |
[23] | Krzysztofik, M., Brzewski, P., Kulbat, A., Masajada, M., Richter, K. and Wysocki, W.M. (2024) The Il-23/Th17 Pathway Inhibitors in the Treatment of Psoriasis and the Risk of Skin Malignancies: A Review. Advances in Dermatology and Allergology, 41, 552-559. https://doi.org/10.5114/ada.2024.143428 |
[24] | Kotb, I.S., Lewis, B.J., Barker, R.N. and Ormerod, A.D. (2018) Differential Effects of Phototherapy, Adalimumab and Betamethasone-Calcipotriol on Effector and Regulatory T Cells in Psoriasis. British Journal of Dermatology, 179, 127-135. https://doi.org/10.1111/bjd.16336 |
[25] | Wei, H., Chen, Q., Lin, L., Sha, C., Li, T., Liu, Y., et al. (2021) Regulation of Exosome Production and Cargo Sorting. International Journal of Biological Sciences, 17, 163-177. https://doi.org/10.7150/ijbs.53671 |
[26] | Sortebech, D., Schoenfeldt, T., Duvetorp, A., Agerholm-Nielsen, R. and Eidsmo, L. (2024) Skin-Resident T Cells Contribute to the Dynamic Disease Manifestations of Psoriasis. The Journal of Immunology, 213, 1267-1277. https://doi.org/10.4049/jimmunol.2400020 |
[27] | 陈乐怡, 王登, 何远. 从细胞免疫应答看银屑病药物研发的最新进展[J]. 中国医院药学杂志, 2024, 44(1): 106-112. |
[28] | You, J., Wang, Z. and Jia, X. (2025) MiR-128-3p Promotes Hyperproliferation of Keratinocytes and Psoriasis-Like Inflammation by Targeting SIRT1/HIF-1α. Archives of Dermatological Research, 317, Article No. 165. https://doi.org/10.1007/s00403-024-03669-8 |
[29] | Li, J., Chang, W., Li, J., Zhao, X. and Li, X. (2025) Il-22-Mediated MicroRNA-124-3p/GRB2 Axis Regulates Hyperproliferation and Inflammatory Response of Keratinocytes in Psoriasis. Archives of Dermatological Research, 317, Article No. 227. https://doi.org/10.1007/s00403-024-03668-9 |
[30] | Freisenhausen, J.C., Luo, L., Kelemen, E., Elton, J., Skoog, V., Pivarcsi, A., et al. (2025) RNA Sequencing Reveals the Long Non‐Coding RNA Signature in Psoriasis Keratinocytes and Identifies CYDAER as a Long Non‐Coding RNA Regulating Epidermal Differentiation. Experimental Dermatology, 34, e70054. https://doi.org/10.1111/exd.70054 |
[31] | Abdallah, F., Henriet, E., Suet, A., Arar, A., Clemençon, R., Malinge, J., et al. (2021) miR-21-3p/IL-22 Axes Are Major Drivers of Psoriasis Pathogenesis by Modulating Keratinocytes Proliferation-Survival Balance and Inflammatory Response. Cells, 10, Article 2547. https://doi.org/10.3390/cells10102547 |
[32] | Lin, J., Cao, Y., Ma, L., Tao, M. and Yang, X. (2024) Keratinocyte Exosomal loc285194 Ameliorates Psoriasis by Inhibiting the Differentiation of CD4+ T Cells to Th17 Cells through Regulating miR-211-5p/SIRT1 Axis. IUBMB Life, 77, e2935. https://doi.org/10.1002/iub.2935 |
[33] | Wu, J., Liu, S., Zhang, H., Zhang, X., Xue, J., Li, Z., et al. (2025) Amlexanox Ameliorates Imiquimod-Induced Psoriasis-Like Dermatitis by Inhibiting Th17 Cells and the NF-κB Signal Pathway. Biomedicine & Pharmacotherapy, 184, Article ID: 117922. https://doi.org/10.1016/j.biopha.2025.117922 |
[34] | Chen, L., Liu, C., Xiang, X., Qiu, W. and Guo, K. (2024) Mir-155 Promotes an Inflammatory Response in HaCaT Cells via the IRF2BP2/KLF2/NF-κB Pathway in Psoriasis. International Journal of Molecular Medicine, 54, Article No. 91. https://doi.org/10.3892/ijmm.2024.5415 |
[35] | Masalha, M., Sidi, Y. and Avni, D. (2018) The Contribution of Feedback Loops between miRNAs, Cytokines and Growth Factors to the Pathogenesis of Psoriasis. Experimental Dermatology, 27, 603-610. https://doi.org/10.1111/exd.13520 |
[36] | Huang, C., Zhong, W., Ren, X., Huang, X., Li, Z., Chen, C., et al. (2021) Correction: MiR-193b-3p-ERBB4 Axis Regulates Psoriasis Pathogenesis via Modulating Cellular Proliferation and Inflammatory-Mediator Production of Keratinocytes. Cell Death & Disease, 12, Article No. 963. https://doi.org/10.1038/s41419-021-04354-8 |
[37] | Shirley, S.N., Watson, A.E. and Yusuf, N. (2024) Pathogenesis of Inflammation in Skin Disease: From Molecular Mechanisms to Pathology. International Journal of Molecular Sciences, 25, Article 10152. https://doi.org/10.3390/ijms251810152 |
[38] | Laha, S., Das, S., Banerjee, U., Ganguly, T., Senapati, S., Chatterjee, G., et al. (2025) Genome-Wide RNA-Seq, DNA Methylation and Small RNA-Seq Analysis Unraveled Complex Gene Regulatory Networks in Psoriasis Pathogenesis. Gene, 933, Article ID: 148903. https://doi.org/10.1016/j.gene.2024.148903 |
[39] | Chen, L., Li, J., Yao, Y., Wang, S., Zheng, S., Ju, X., et al. (2021) Circulating MicroRNA Profile Unveils Mechanisms of Action of Acitretin for Psoriasis Vulgaris. Bioengineered, 12, 1838-1850. https://doi.org/10.1080/21655979.2021.1925205 |
[40] | Buda, P., Michalski, P., Warmusz, O., Michalska-Bańkowska, A., Sirek, T., Ossowski, P., et al. (2023) Influence of Adalimumab on Interleukin 12/23 Signalling Pathways in Human Keratinocytes Treated with Lipopolysaccharide A. Advances in Dermatology and Allergology, 40, 647-654. https://doi.org/10.5114/ada.2023.129272 |
[41] | Wang, D., Tang, W., Sun, N., Cao, K., Li, Q., Li, S., et al. (2024) Correction: Uncovering the Mechanism of Scopoletin in Ameliorating Psoriasis-Like Skin Symptoms via Inhibition of PI3K/Akt/mTOR Signaling Pathway. Inflammation. https://doi.org/10.1007/s10753-024-02225-w |
[42] | Mercurio, L., Albanesi, C. and Madonna, S. (2021) Recent Updates on the Involvement of PI3K/AKT/mTOR Molecular Cascade in the Pathogenesis of Hyperproliferative Skin Disorders. Frontiers in Medicine, 8, Article 665647. https://doi.org/10.3389/fmed.2021.665647 |
[43] | Yang, X.L. and Wang, H.L. (2021) miRNAs Flowing up and Down: The Concerto of Psoriasis. Frontiers in Medicine, 8, Article 646796. https://doi.org/10.3389/fmed.2021.646796 |
[44] | Zhang, B. and Wu, S. (2023) Downregulation of Circ_0024028 Inhibits Il-22-Induced Keratinocyte Proliferation and Migration by miR-486-3p/AKT3 Axis. Archives of Dermatological Research, 315, 2079-2090. https://doi.org/10.1007/s00403-023-02597-3 |
[45] | Mao, M., Yuan, Y., Li, R., Kuang, Y., Lu, Y., Zhu, W., et al. (2025) Modulation of Gut Propionate and Intestinal Mucosal Protection by Bifidobacterium Longum: Mitigating Methotrexate Side Effects without Compromising the Efficacy of Psoriasis Therapy. International Immunopharmacology, 149, Article ID: 114196. https://doi.org/10.1016/j.intimp.2025.114196 |
[46] | Xin, Y., Yang, M., Zhao, Z., He, Z., Mei, Y., Xiong, F., et al. (2025) AIM2 Deficiency in CD4+ T Cells Promotes Psoriasis-Like Inflammation by Regulating Th17-Treg Axis via AIM2-IKZF2 Pathway. Journal of Autoimmunity, 150, Article ID: 103351. https://doi.org/10.1016/j.jaut.2024.103351 |
[47] | Shahine, Y., El-Aal, S.A.A., Reda, A.M., Sheta, E., Atia, N.M., Abdallah, O.Y., et al. (2023) Diosmin Nanocrystal Gel Alleviates Imiquimod-Induced Psoriasis in Rats via Modulating TLR7, 8/NF-κB/MicroRNA-31, AKT/mTOR/P70S6K Milieu, and Tregs/Th17 Balance. Inflammopharmacology, 31, 1341-1359. https://doi.org/10.1007/s10787-023-01198-w |
[48] | Tang, B., Bi, Y., Zheng, X., Yang, Y., Huang, X., Yang, K., et al. (2024) The Role of Extracellular Vesicles in the Development and Treatment of Psoriasis: Narrative Review. Pharmaceutics, 16, Article 1586. https://doi.org/10.3390/pharmaceutics16121586 |
[49] | Wójcik, M., Zmarzły, N., Derkacz, A., Kulpok-Bagiński, T., Blek, N. and Grabarek, B.O. (2024) Gene Expression Profile of Mitogen-Activated Kinases and MicroRNAs Controlling Their Expression in HaCaT Cell Culture Treated with Lipopolysaccharide a and Cyclosporine A. Cell Cycle, 23, 279-293. https://doi.org/10.1080/15384101.2024.2320508 |
[50] | O'Brien, J., Hayder, H., Zayed, Y. and Peng, C. (2018) Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Frontiers in Endocrinology, 9, Article 402. https://doi.org/10.3389/fendo.2018.00402 |
[51] | Yang, S., Alalaiwe, A., Lin, Z., Lin, Y., Aljuffali, I.A. and Fang, J. (2022) Anti-Inflammatory MicroRNAs for Treating Inflammatory Skin Diseases. Biomolecules, 12, Article 1072. https://doi.org/10.3390/biom12081072 |
[52] | Carreras-Badosa, G., Maslovskaja, J., Vaher, H., Pajusaar, L., Annilo, T., Lättekivi, F., et al. (2022) Mirna Expression Profiles of the Perilesional Skin of Atopic Dermatitis and Psoriasis Patients Are Highly Similar. Scientific Reports, 12, Article No. 22645. https://doi.org/10.1038/s41598-022-27235-2 |
[53] | Abdallah, H.Y., Faisal, S., Tawfik, N.Z., Soliman, N.H., Kishk, R.M. and Ellawindy, A. (2023) Expression Signature of Immune-Related MicroRNAs in Autoimmune Skin Disease: Psoriasis and Vitiligo Insights. Molecular Diagnosis & Therapy, 27, 405-423. https://doi.org/10.1007/s40291-023-00646-1 |
[54] | 陆子轩, 吴建华. 胞外囊泡在银屑病中的研究进展[J]. 中国麻风皮肤病杂志, 2023, 39(3): 218-222. |
[55] | 刘佳, 赵新程, 韩齐心, 等. miR-155在银屑病皮肤间充质干细胞外泌体中的差异表达研究[J]. 中国实用医药, 2022, 17(11): 186-190. |
[56] | Miao, G., Pan, J., Wang, L. and Li, F. (2024) Analysis of the Correlation between the Levels of HIF-1α and miR-199a in Lesions and the Psoriasis Severity Index. Advances in Dermatology and Allergology, 41, 521-524. https://doi.org/10.5114/ada.2024.143495 |
[57] | Lättekivi, F., Guljavina, I., Midekessa, G., Viil, J., Heath, P.R., Bæk, R., et al. (2022) Profiling Blood Serum Extracellular Vesicles in Plaque Psoriasis and Psoriatic Arthritis Patients Reveals Potential Disease Biomarkers. International Journal of Molecular Sciences, 23, Article 4005. https://doi.org/10.3390/ijms23074005 |
[58] | Zhang, M., Niu, Z., Huang, Q., Han, L., Du, J., Liang, J., et al. (2024) Identification of an Exosomal miRNA-mRNA Regulatory Network Contributing to Methotrexate Efficacy. International Immunopharmacology, 135, Article ID: 112280. https://doi.org/10.1016/j.intimp.2024.112280 |
[59] | Saadawy, S.F., El‐Ghareeb, M.I. and Talaat, A. (2023) MicroRNA‐21 and MicroRNA‐125b Expression in Skin Tissue and Serum as Predictive Biomarkers for Psoriasis. International Journal of Dermatology, 63, 322-329. https://doi.org/10.1111/ijd.16962 |
[60] | Park, Y.J., Kim, D.C., Lee, S., Kim, H.S., Pak, J.Y., Kim, J., et al. (2024) Keratinocyte-Derived Circulating MicroRNAs in Extracellular Vesicles: A Novel Biomarker of Psoriasis Severity and Potential Therapeutic Target. Journal of Translational Medicine, 22, Article No. 235. https://doi.org/10.1186/s12967-024-05030-z |
[61] | Abdul, N.S., Ronsivalle, V., Shivakumar, S., Fiorillo, L. and Minervini, G. (2025) Exosomal Biomarkers for Prognosis in Oral Squamous Cell Carcinoma—A Systematic Review of Emerging Technologies. Journal of Craniofacial Surgery. https://doi.org/10.1097/scs.0000000000011104 |
[62] | Mehta, M.J., Shin, D., Park, H.S., An, J.S., Lim, S.I., Kim, H.J., et al. (2025) Exosome‐Based Theranostic for Gastrointestinal Cancer: Advances in Biomarker Discovery and Therapeutic Engineering. Small Methods. https://doi.org/10.1002/smtd.202402058 |
[63] | Chen, W., Li, C., Yi, Z., Luo, G., Zhang, P., Wu, P., et al. (2025) MicroRNA Expression Profile in the Patient's Plasma Exosomes of Alcohol‐Induced Osteonecrosis of Femoral Head: Potential Vascular Regulation Mechanism. Journal of Cellular and Molecular Medicine, 29, e70382. https://doi.org/10.1111/jcmm.70382 |
[64] | Diotallevi, F., Matacchione, G., d’Agostino, G.M., Gioacchini, H., Campanati, A., Sabbatinelli, J., et al. (2023) Inflammamir-146a and-155 Plasma Levels Are Associated with Clinical Efficacy of Risankizumab Treatment in Psoriatic Patients: Pilot Study. Dermatology and Therapy, 13, 1377-1387. https://doi.org/10.1007/s13555-023-00931-1 |
[65] | Boriachek, K., Islam, M.N., Möller, A., Salomon, C., Nguyen, N., Hossain, M.S.A., et al. (2017) Biological Functions and Current Advances in Isolation and Detection Strategies for Exosome Nanovesicles. Small, 14, Article ID: 1702153. https://doi.org/10.1002/smll.201702153 |
[66] | Aghabozorgi, A.S., Ahangari, N., Eftekhaari, T.E., Torbati, P.N., Bahiraee, A., Ebrahimi, R., et al. (2019) Circulating Exosomal Mirnas in Cardiovascular Disease Pathogenesis: New Emerging Hopes. Journal of Cellular Physiology, 234, 21796-21809. https://doi.org/10.1002/jcp.28942 |
[67] | Wójcik, M., Plata-Babula, A., Głowaczewska, A., Sirek, T., Orczyk, A., Małecka, M., et al. (2024) Expression Profile of mRNAs and miRNAs Related to Mitogen-Activated Kinases in HaCaT Cell Culture Treated with Lipopolysaccharide a and Adalimumab. Cell Cycle, 23, 385-404. https://doi.org/10.1080/15384101.2024.2335051 |
[68] | Margiana, R., Markov, A., Zekiy, A.O., Hamza, M.U., Al-Dabbagh, K.A., Al-Zubaidi, S.H., et al. (2022) Clinical Application of Mesenchymal Stem Cell in Regenerative Medicine: A Narrative Review. Stem Cell Research & Therapy, 13, Article No. 366. https://doi.org/10.1186/s13287-022-03054-0 |
[69] | Clua‐Ferré, L., Suau, R., Vañó‐Segarra, I., Ginés, I., Serena, C. and Manyé, J. (2024) Therapeutic Potential of Mesenchymal Stem Cell‐Derived Extracellular Vesicles: A Focus on Inflammatory Bowel Disease. Clinical and Translational Medicine, 14, e70075. https://doi.org/10.1002/ctm2.70075 |
[70] | Kumar, M.A., Baba, S.K., Sadida, H.Q., Marzooqi, S.A., Jerobin, J., Altemani, F.H., et al. (2024) Extracellular Vesicles as Tools and Targets in Therapy for Diseases. Signal Transduction and Targeted Therapy, 9, Article No. 27. https://doi.org/10.1038/s41392-024-01735-1 |
[71] | Sadeghi, S., Tehrani, F.R., Tahmasebi, S., Shafiee, A. and Hashemi, S.M. (2023) Exosome Engineering in Cell Therapy and Drug Delivery. Inflammopharmacology, 31, 145-169. https://doi.org/10.1007/s10787-022-01115-7 |
[72] | Chandran, N.S., Bhupendrabhai, M.N., Tan, T.T., Zhang, B., Lim, S.K., Choo, A.B.H., et al. (2025) A Phase 1, Open-Label Study to Determine Safety and Tolerability of the Topical Application of Mesenchymal Stem/Stromal Cell (MSC) Exosome Ointment to Treat Psoriasis in Healthy Volunteers. Cytotherapy. https://doi.org/10.1016/j.jcyt.2025.01.007 |