|
基于TGF-β1/Smads信号通路探讨中医药治疗心脏纤维化
|
Abstract:
心脏纤维化是遗传性和获得性心血管疾病(Cardiovascular Disease, CVD)的最终常见病理,导致功能和电生理异常,并同时参与了各种疾病的发展与转归,长期以来一直被视为一种治疗靶点。现有多项研究证实转化生长因子-β (Transforming Growth Factor β, TGF-β)与下游Smad家族所介导的纤维化在心脏纤维化中起着关键作用。以此通路为靶点的中医药研究是目前逆转心脏纤维化的热点。因此,文章以TGF-β1/Smads信号通路为线索,概述近年来中药复方及单味药提取物干预该通路和上下游相关因子,以达到逆转心脏纤维化的作用机制,借以阐明中医药靶向治疗的作用及机制。
Cardiac fibrosis is the ultimate common pathology of inherited and acquired cardiovascular disease (CVD), resulting in functional and electrophysiological abnormalities, and is simultaneously involved in the development and outcome of various diseases and has long been regarded as a therapeutic target. A number of studies have confirmed that transforming growth factor β (TGF-β) and downstream Smad family-mediated fibrosis plays a key role in cardiac fibrosis. Currently, the research of traditional Chinese medicine targeting this pathway focuses on reversing cardiac fibrosis. Therefore, in this paper, TGF-β1/Smads signaling pathway clues were used to summarize the mechanism of intervention of TCM compounds and single drug extracts in this pathway and related upstream and downstream factors in recent years to reverse cardiac fibrosis, so as to clarify the role and mechanism of targeted therapy of traditional Chinese medicine.
[1] | Mensah, G.A., Fuster, V., Murray, C.J.L., et al. (2023) Global Burden of Cardiovascular Diseases and Risks, 1990-2022. Journal of the American College of Cardiology, 82, 2350-2473. |
[2] | Mensah, G.A., Fuster, V. and Roth, G.A. (2023) A Heart-Healthy and Stroke-Free World: Using Data to Inform Global Action. Journal of the American College of Cardiology, 82, 2343-2349. https://doi.org/10.1016/j.jacc.2023.11.003 |
[3] | 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2022概要[J]. 中国循环杂志, 2023, 38(6): 583-612. |
[4] | Chen, H., Moreno-Moral, A., Pesce, F., Devapragash, N., Mancini, M., Heng, E.L., et al. (2019) WWP2 Regulates Pathological Cardiac Fibrosis by Modulating SMAD2 Signaling. Nature Communications, 10, Article No. 3616. https://doi.org/10.1038/s41467-019-11551-9 |
[5] | Tallquist, M.D. and Molkentin, J.D. (2017) Redefining the Identity of Cardiac Fibroblasts. Nature Reviews Cardiology, 14, 484-491. https://doi.org/10.1038/nrcardio.2017.57 |
[6] | 吕晓蕾, 赵培, 张振刚. 心肌纤维化: 一个慢性炎症反应过程[J]. 中国组织工程研究与临床康复, 2007(51): 10416-10420. |
[7] | Keiichi, T., Katherine, E., Yuki, N., et al. (2024) Cardiac and Perivascular Myofibroblasts, Matrifibrocytes, and Immune Fibrocytes in Hypertension; Commonalities and Differences with Other Cardiovascular Diseases. Cardiovascular Research, 120, 567-580. |
[8] | Meng, X., Nikolic-Paterson, D.J. and Lan, H.Y. (2016) TGF-β: The Master Regulator of Fibrosis. Nature Reviews Nephrology, 12, 325-338. https://doi.org/10.1038/nrneph.2016.48 |
[9] | Rahmutula, D., Zhang, H., Wilson, E.E. and Olgin, J.E. (2018) Absence of Natriuretic Peptide Clearance Receptor Attenuates TGF-β1-Induced Selective Atrial Fibrosis and Atrial Fibrillation. Cardiovascular Research, 115, 357-372. https://doi.org/10.1093/cvr/cvy224 |
[10] | Gramley, F., Lorenzen, J., Koellensperger, E., Kettering, K., Weiss, C. and Munzel, T. (2010) Atrial Fibrosis and Atrial Fibrillation: The Role of the TGF-β1 Signaling Pathway. International Journal of Cardiology, 143, 405-413. https://doi.org/10.1016/j.ijcard.2009.03.110 |
[11] | Derynck, R. and Zhang, Y.E. (2003) Smad-Dependent and Smad-Independent Pathways in TGF-β Family Signalling. Nature, 425, 577-584. https://doi.org/10.1038/nature02006 |
[12] | Hu, H., Chen, D., Wang, Y., Feng, Y., Cao, G., Vaziri, N.D., et al. (2018) New Insights into TGF-β/Smad Signaling in Tissue Fibrosis. Chemico-Biological Interactions, 292, 76-83. https://doi.org/10.1016/j.cbi.2018.07.008 |
[13] | Santibañez, J.F., Quintanilla, M. and Bernabeu, C. (2011) TGF-β/TGF-β Receptor System and Its Role in Physiological and Pathological Conditions. Clinical Science, 121, 233-251. https://doi.org/10.1042/cs20110086 |
[14] | Xiao, M., Zhang, M., Bie, M., Wang, X., Guo, J. and Xiao, H. (2020) Galectin-3 Induces Atrial Fibrosis by Activating the TGF-β1/Smad Pathway in Patients with Atrial Fibrillation. Cardiology, 145, 446-455. https://doi.org/10.1159/000506072 |
[15] | Walton, K.L., Johnson, K.E. and Harrison, C.A. (2017) Targeting TGF-β Mediated SMAD Signaling for the Prevention of Fibrosis. Frontiers in Pharmacology, 8, Article 461. https://doi.org/10.3389/fphar.2017.00461 |
[16] | Zhao, J., Chen, Y., Chen, Q., Hong, T., Zhong, Z., He, J., et al. (2022) Curcumin Ameliorates Cardiac Fibrosis by Regulating Macrophage-Fibroblast Crosstalk via IL18-P-SMAD2/3 Signaling Pathway Inhibition. Frontiers in Pharmacology, 12, Article 784041. https://doi.org/10.3389/fphar.2021.784041 |
[17] | Engebretsen, K.V.T., Skårdal, K., Bjørnstad, S., Marstein, H.S., Skrbic, B., Sjaastad, I., et al. (2014) Attenuated Development of Cardiac Fibrosis in Left Ventricular Pressure Overload by SM16, an Orally Active Inhibitor of Alk5. Journal of Molecular and Cellular Cardiology, 76, 148-157. https://doi.org/10.1016/j.yjmcc.2014.08.008 |
[18] | González, A., López, B., Ravassa, S., San José, G., Latasa, I., Butler, J., et al. (2024) Myocardial Interstitial Fibrosis in Hypertensive Heart Disease: From Mechanisms to Clinical Management. Hypertension, 81, 218-228. https://doi.org/10.1161/hypertensionaha.123.21708 |
[19] | Chen, H., Song, H., Liu, X., Tian, J., Tang, W., Cao, T., et al. (2017) Buyanghuanwu Decoction Alleviated Pressure Overload Induced Cardiac Remodeling by Suppressing TGF-β/Smads and MAPKs Signaling Activated Fibrosis. Biomedicine & Pharmacotherapy, 95, 461-468. https://doi.org/10.1016/j.biopha.2017.08.102 |
[20] | 李佳莘, 朱晓雨, 鲁美丽, 等. 黄芪甲苷对大鼠心肌纤维化的影响[J]. 中药药理与临床, 2016, 32(5): 42-45. |
[21] | 李佳莘, 朱晓雨, 鲁美丽, 等. 电针与黄芪甲苷结合对大鼠心肌纤维化的影响[J]. 针刺研究, 2017, 42(6): 477-481. |
[22] | Wei, Y., Wu, Y., Feng, K., Zhao, Y., Tao, R., Xu, H., et al. (2020) Astragaloside IV Inhibits Cardiac Fibrosis via miR-135a-TRPM7-TGF-β/Smads Pathway. Journal of Ethnopharmacology, 249, Article ID: 112404. https://doi.org/10.1016/j.jep.2019.112404 |
[23] | 张石在, 王毅, 马瑞莲, 等. 黄芪多糖抑制TGF-β1和Nox4/Akt/mTOR信号通路保护心肌重构的作用研究[J]. 中国现代应用药学, 2021, 38(24): 3108-3114. |
[24] | 冯博, 房玉涛, 徐瑞山. 桂枝汤的现代临床应用及作用机制研究进展[J]. 中国中药杂志, 2018, 43(12): 2442-2447. |
[25] | 袁海建, 李卫, 金建明, 等. 桂枝汤化学成分、药理作用机制与临床应用研究进展[J]. 中国中药杂志, 2017, 42(23): 4556-4564. |
[26] | 陈纪烨, 周国锋, 王永成, 等. 桂枝汤桂枝-白芍不同比例配伍通过调节TGF-β1/Smads信号通路及慢性炎症改善盐敏感高血压大鼠心肌纤维化[J]. 中国实验方剂学杂志, 2020, 26(1): 50-58. |
[27] | Su, C., Wang, Q., Luo, H., Jiao, W., Tang, J., Li, L., et al. (2020) Si-Miao-Yong-An Decoction Attenuates Cardiac Fibrosis via Suppressing TGF-β1 Pathway and Interfering with MMP-TIMPs Expression. Biomedicine & Pharmacotherapy, 127, Article ID: 110132. https://doi.org/10.1016/j.biopha.2020.110132 |
[28] | Lee, H.L., Kim, J.M., Go, M.J., Kim, T.Y., Joo, S.G., Kim, J.H., et al. (2023) Protective Effect of Lonicera Japonica on PM2.5-Induced Pulmonary Damage in BALB/c Mice via the TGF-β and NF-κB Pathway. Antioxidants, 12, Article 968. https://doi.org/10.3390/antiox12040968 |
[29] | Hui, M., Yi, Z., Zhenlin, H., et al. (2019) Lonicera Japonica Attenuates Carbon Tetrachloride-Induced Liver Fibrosis in Mice: Molecular Mechanisms of Action. The American Journal of Chinese Medicine, 47, 351-367. |
[30] | Tan, Z., Jiang, X., Zhou, W., Deng, B., Cai, M., Deng, S., et al. (2021) Taohong Siwu Decoction Attenuates Myocardial Fibrosis by Inhibiting Fibrosis Proliferation and Collagen Deposition via TGFBR1 Signaling Pathway. Journal of Ethnopharmacology, 270, Article ID: 113838. https://doi.org/10.1016/j.jep.2021.113838 |
[31] | Liu, X., Chen, K., Zhuang, Y., Huang, Y., Sui, Y., Zhang, Y., et al. (2019) Paeoniflorin Improves Pressure Overload-Induced Cardiac Remodeling by Modulating the MAPK Signaling Pathway in Spontaneously Hypertensive Rats. Biomedicine & Pharmacotherapy, 111, 695-704. https://doi.org/10.1016/j.biopha.2018.12.090 |
[32] | Wang, L., Shi, H., Huang, J., Xu, S. and Liu, P. (2019) Linggui Zhugan Decoction (苓桂术甘汤) Inhibits Ventricular Remodeling after Acute Myocardial Infarction in Rats by Suppressing TGF-β1/Smad Signaling Pathway. Chinese Journal of Integrative Medicine, 26, 345-352. https://doi.org/10.1007/s11655-018-3024-0 |
[33] | Zhang, X., Shao, C., Cheng, S., Zhu, Y., Liang, B. and Gu, N. (2021) Effect of Guanxin V in Animal Model of Acute Myocardial Infarction. BMC Complementary Medicine and Therapies, 21, Article No. 72. https://doi.org/10.1186/s12906-021-03211-7 |
[34] | Liang, B., Zhang, X., Li, R. and Gu, N. (2022) Guanxin V Protects against Ventricular Remodeling after Acute Myocardial Infarction through the Interaction of TGF-β1 and Vimentin. Phytomedicine, 95, Article ID: 153866. https://doi.org/10.1016/j.phymed.2021.153866 |
[35] | Shen, Z., Shen, A., Chen, X., Wu, X., Chu, J., Cheng, Y., et al. (2020) Huoxin Pill Attenuates Myocardial Infarction-Induced Apoptosis and Fibrosis via Suppression of P53 and TGF-β1/Smad2/3 Pathways. Biomedicine & Pharmacotherapy, 130, Article ID: 110618. https://doi.org/10.1016/j.biopha.2020.110618 |
[36] | Li, C., Zhang, J., Hu, W. and Li, S. (2020) Atrial Fibrosis Underlying Atrial Fibrillation (Review). International Journal of Molecular Medicine, 47, Article No. 9. https://doi.org/10.3892/ijmm.2020.4842 |
[37] | Tan, A.Y. and Zimetbaum, P. (2010) Atrial Fibrillation and Atrial Fibrosis. Journal of Cardiovascular Pharmacology. https://doi.org/10.1097/fjc.0b013e318207a572 |
[38] | 颜晓睿, 吴启华, 赵帅, 等. 基于“痰瘀生风”理论研究中药复方调控TGF-β1/Smad2/3/α-SMA信号通路治疗痰浊血瘀型PAF的机制研究[J]. 时珍国医国药, 2023, 34(6): 1334-1337. |
[39] | Huang, X.Y. and Chen, C.X. (2013) Effect of Oxymatrine, the Active Component from Radix Sophorae flavescentis (Kushen), on Ventricular Remodeling in Spontaneously Hypertensive Rats. Phytomedicine, 20, 202-212. https://doi.org/10.1016/j.phymed.2012.10.012 |
[40] | Ma, J., Ma, S., Yin, C. and Wu, H. (2018) Matrine Reduces Susceptibility to Postinfarct Atrial Fibrillation in Rats Due to Antifibrotic Properties. Journal of Cardiovascular Electrophysiology, 29, 616-627. https://doi.org/10.1111/jce.13448 |
[41] | Siebermair, J., Kholmovski, E.G. and Marrouche, N. (2017) Assessment of Left Atrial Fibrosis by Late Gadolinium Enhancement Magnetic Resonance Imaging. JACC: Clinical Electrophysiology, 3, 791-802. https://doi.org/10.1016/j.jacep.2017.07.004 |
[42] | Ma, J., Ren, M., Li, J., Zheng, C., Chen, Q. and Ma, S. (2022) Danqi Soft Caspule Prevents Atrial Fibrillation by Ameliorating Left Atrial Remodeling through Inhibiting Cardiac Fibroblasts Differentiation and Function. Phytomedicine, 101, Article ID: 154134. https://doi.org/10.1016/j.phymed.2022.154134 |
[43] | Shi, Y.J., Liu, C.Q., Xiong, S., et al. (2023) Ling-Gui-Qi-Hua Formula Alleviates Left Ventricular Myocardial Fibrosis in Rats with Heart Failure with Preserved Ejection Fraction by Blocking the Transforming Growth Factor-β1/Smads Signaling Pathway. Journal of Ethnopharmacology, 317, Article ID: 116849. |
[44] | Zhang, S., Liu, H., Fang, Q., He, H., Lu, X., Wang, Y., et al. (2021) Shexiang Tongxin Dropping Pill Protects against Chronic Heart Failure in Mice via Inhibiting the ERK/MAPK and TGF-β Signaling Pathways. Frontiers in Pharmacology, 12, Article 796354. https://doi.org/10.3389/fphar.2021.796354 |
[45] | Kaur, A. and Bhatti, R. (2021) Understanding the Phytochemistry and Molecular Insights to the Pharmacology of Angelica archangelica L. (Garden Angelica) and Its Bioactive Components. Phytotherapy Research, 35, 5961-5979. https://doi.org/10.1002/ptr.7206 |
[46] | Song, X., Kong, J., Song, J., Pan, R. and Wang, L. (2021) Angelica Sinensis Polysaccharide Alleviates Myocardial Fibrosis and Oxidative Stress in the Heart of Hypertensive Rats. Computational and Mathematical Methods in Medicine, 2021, Article ID: 6710006. https://doi.org/10.1155/2021/6710006 |
[47] | Xu, W.Q., Lyu, W., Duan, C.C., et al. (2023) Preparation and Bioactivity of the Rare Ginsenosides Rg3 and Rh2: An Updated Review. Fitoterapia, 167, Article ID: 105514. |
[48] | Fan, X., Xu, Y., Zhu, D. and Ji, Y. (2017) Pharmacokinetic Comparison of 20(R)‐ and 20(s)‐Ginsenoside Rh1 and 20(R)‐ and 20(s)‐Ginsenoside Rg3 in Rat Plasma Following Oral Administration of Radix Ginseng Rubra and Sheng‐Mai‐San Extracts. Evidence-Based Complementary and Alternative Medicine, 2017, Article ID: 6451963. https://doi.org/10.1155/2017/6451963 |
[49] | Xu, H., Miao, H., Chen, G., Zhang, G., Hua, Y., Wu, Y., et al. (2023) 20(s)-Ginsenoside Rg3 Exerts Anti-Fibrotic Effect after Myocardial Infarction by Alleviation of Fibroblasts Proliferation and Collagen Deposition through TGFBR1 Signaling Pathways. Journal of Ginseng Research, 47, 743-754. https://doi.org/10.1016/j.jgr.2023.06.007 |
[50] | Xing, Z.W., Yang, C., Feng, Y.Q., et al. (2023) Understanding Aconite’s Anti-Fibrotic Effects in Cardiac Fibrosis. Phytomedicine, 122, Article ID: 155112. |
[51] | Shahid, S., Kim, G., Johnson, N.R., Wafula, E., Wang, F., Coruh, C., et al. (2018) MicroRNAs from the Parasitic Plant Cuscuta Campestris Target Host Messenger RNAs. Nature, 553, 82-85. https://doi.org/10.1038/nature25027 |
[52] | Tingting, Z., Yu, Z., Si, L., et al. (2023) Gentianella Acuta-Derived Gen-miR-1 Suppresses Myocardial Fibrosis by Targeting HAX1/HMG20A/Smads Axis to Attenuate Inflammation in Cardiac Fibroblasts. Phytomedicine, 118, Article ID: 154923. |