全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

IL1RAP在恶性肿瘤中作用的研究进展
Research Progress of the Role of IL1RAP in Malignant Tumors

DOI: 10.12677/wjcr.2025.152007, PP. 53-60

Keywords: IL1RAP,恶性肿瘤,信号通路,IL-1
IL1RAP
, Malignant Tumors, Signaling Pathway, IL-1

Full-Text   Cite this paper   Add to My Lib

Abstract:

白介素1受体辅助蛋白(IL1RAP)是白介素1 (IL-1)家族的共受体,通过与白介素1受体(IL-1R)结合形成多聚复合物并激活下游信号通路发挥生物学效应。IL1RAP介导的信号通路在各类恶性肿瘤中表现出促增殖和促侵袭、迁移的特性,包括血液系统肿瘤、消化道肿瘤、乳腺癌、宫颈癌等。本综述旨在阐明IL1RAP介导的信号通路的生物学效应,以及IL1RAP在各类恶性肿瘤中作用机制的研究进展。
Interleukin 1 receptor accessory protein (IL1RAP) is a co-receptor of the interleukin 1 (IL-1) family, which exerts biological effects by binding to the interleukin 1 receptor (IL-1R) to form a multimeric complex and activating the downstream signaling pathway. The signaling pathway mediated by IL1RAP shows pro-proliferative, pro-invasive, and migratory properties in various types of malignant tumors, including hematological tumors, gastrointestinal tract tumors, breast cancers, cervical cancer, etc. The aim of this review is to elucidate the biological effects of IL1RAP-mediated signaling pathway and the progress of the research on the mechanism of IL1RAP in various malignant tumors.

References

[1]  Højen, J.F., Kristensen, M.L.V., McKee, A.S., Wade, M.T., Azam, T., Lunding, L.P., et al. (2019) IL-1R3 Blockade Broadly Attenuates the Functions of Six Members of the IL-1 Family, Revealing Their Contribution to Models of Disease. Nature Immunology, 20, 1138-1149.
https://doi.org/10.1038/s41590-019-0467-1
[2]  Li, X., Commane, M., Jiang, Z. and Stark, G.R. (2001) IL-1-Induced NF-κB and C-Jun N-Terminal Kinase (JNK) Activation Diverge at IL-1 Receptor-Associated Kinase (IRAK). Proceedings of the National Academy of Sciences, 98, 4461-4465.
https://doi.org/10.1073/pnas.071054198
[3]  Fields, J.K., Günther, S. and Sundberg, E.J. (2019) Structural Basis of IL-1 Family Cytokine Signaling. Frontiers in Immunology, 10, Article 1412.
https://doi.org/10.3389/fimmu.2019.01412
[4]  Greenfeder, S.A., Nunes, P., Kwee, L., Labow, M., Chizzonite, R.A. and Ju, G. (1995) Molecular Cloning and Characterization of a Second Subunit of the Interleukin 1 Receptor Complex. Journal of Biological Chemistry, 270, 13757-13765.
https://doi.org/10.1074/jbc.270.23.13757
[5]  Frenay, J., Bellaye, P., Oudot, A., Helbling, A., Petitot, C., Ferrand, C., et al. (2022) IL-1RAP, a Key Therapeutic Target in Cancer. International Journal of Molecular Sciences, 23, Article 14918.
https://doi.org/10.3390/ijms232314918
[6]  Wesche, H., Korherr, C., Kracht, M., Falk, W., Resch, K. and Martin, M.U. (1997) The Interleukin-1 Receptor Accessory Protein (IL-1RACP) Is Essential for IL-1-Induced Activation of Interleukin-1 Receptor-Associated Kinase (IRAK) and Stress-Activated Protein Kinases (SAP Kinases). Journal of Biological Chemistry, 272, 7727-7731.
https://doi.org/10.1074/jbc.272.12.7727
[7]  Jensen, L.E. and Whitehead, A.S. (2003) Expression of Alternatively Spliced Interleukin-1 Receptor Accessory Protein mRNAs Is Differentially Regulated during Inflammation and Apoptosis. Cellular Signalling, 15, 793-802.
https://doi.org/10.1016/s0898-6568(03)00039-1
[8]  Krumm, B., Xiang, Y. and Deng, J. (2014) Structural Biology of the IL-1 Superfamily: Key Cytokines in the Regulation of Immune and Inflammatory Responses. Protein Science, 23, 526-538.
https://doi.org/10.1002/pro.2441
[9]  Casadio, R., Frigimelica, E., Bossù, P., Neumann, D., Martin, M.U., Tagliabue, A., et al. (2001) Model of Interaction of the IL-1 Receptor Accessory Protein IL-1RACP with the IL-1β/IL-1RI Complex. FEBS Letters, 499, 65-68.
https://doi.org/10.1016/s0014-5793(01)02515-7
[10]  Zarezadeh Mehrabadi, A., Aghamohamadi, N., Khoshmirsafa, M., Aghamajidi, A., Pilehforoshha, M., Massoumi, R., et al. (2022) The Roles of Interleukin-1 Receptor Accessory Protein in Certain Inflammatory Conditions. Immunology, 166, 38-46.
https://doi.org/10.1111/imm.13462
[11]  Jensen, L.E., Muzio, M., Mantovani, A. and Whitehead, A.S. (2000) IL-1 Signaling Cascade in Liver Cells and the Involvement of a Soluble Form of the IL-1 Receptor Accessory Protein. The Journal of Immunology, 164, 5277-5286.
https://doi.org/10.4049/jimmunol.164.10.5277
[12]  Yilmaz-Elis, S., Aartsma-Rus, A., Vroon, A., van Deutekom, J., de Kimpe, S., Hoen, P.A.C., et al. (2012) Antisense Oligonucleotide Mediated Exon Skipping as a Potential Strategy for the Treatment of a Variety of Inflammatory Diseases Such as Rheumatoid Arthritis. Annals of the Rheumatic Diseases, 71, i75-i77.
https://doi.org/10.1136/annrheumdis-2011-200971
[13]  Gabay, C., Lamacchia, C. and Palmer, G. (2010) IL-1 Pathways in Inflammation and Human Diseases. Nature Reviews Rheumatology, 6, 232-241.
https://doi.org/10.1038/nrrheum.2010.4
[14]  Smith, D.E., Lipsky, B.P., Russell, C., Ketchem, R.R., Kirchner, J., Hensley, K., et al. (2009) A Central Nervous System-Restricted Isoform of the Interleukin-1 Receptor Accessory Protein Modulates Neuronal Responses to Interleukin-1. Immunity, 30, 817-831.
https://doi.org/10.1016/j.immuni.2009.03.020
[15]  Acuner Ozbabacan, S.E., Gursoy, A., Nussinov, R. and Keskin, O. (2014) The Structural Pathway of Interleukin 1 (IL-1) Initiated Signaling Reveals Mechanisms of Oncogenic Mutations and SNPS in Inflammation and Cancer. PLOS Computational Biology, 10, e1003470.
https://doi.org/10.1371/journal.pcbi.1003470
[16]  Huang, J., Gao, X., Li, S. and Cao, Z. (1997) Recruitment of IRAK to the Interleukin 1 Receptor Complex Requires Interleukin 1 Receptor Accessory Protein. Proceedings of the National Academy of Sciences, 94, 12829-12832.
https://doi.org/10.1073/pnas.94.24.12829
[17]  Bozaoglu, K., Attard, C., Kulkarni, H., Cummings, N., Diego, V.P., Carless, M.A., et al. (2014) Plasma Levels of Soluble Interleukin 1 Receptor Accessory Protein Are Reduced in Obesity. The Journal of Clinical Endocrinology & Metabolism, 99, 3435-3443.
https://doi.org/10.1210/jc.2013-4475
[18]  Weber, A., Wasiliew, P. and Kracht, M. (2010) Interleukin-1 (IL-1) Pathway. Science Signaling, 3, 1-6.
https://doi.org/10.1126/scisignal.3105cm1
[19]  Towne, J.E., Garka, K.E., Renshaw, B.R., Virca, G.D. and Sims, J.E. (2004) Interleukin (IL)-1F6, IL-1F8, and IL-1F9 Signal through IL-1RRP2 and IL-1RACP to Activate the Pathway Leading to NF-κB and MAPKS. Journal of Biological Chemistry, 279, 13677-13688.
https://doi.org/10.1074/jbc.m400117200
[20]  Drube, S., Heink, S., Walter, S., Löhn, T., Grusser, M., Gerbaulet, A., et al. (2010) The Receptor Tyrosine Kinase C-Kit Controls IL-33 Receptor Signaling in Mast Cells. Blood, 115, 3899-3906.
https://doi.org/10.1182/blood-2009-10-247411
[21]  Schmitz, J., Owyang, A., Oldham, E., Song, Y., Murphy, E., McClanahan, T.K., et al. (2005) IL-33, an Interleukin-1-Like Cytokine That Signals via the IL-1 Receptor-Related Protein ST2 and Induces T Helper Type 2-Associated Cytokines. Immunity, 23, 479-490.
https://doi.org/10.1016/j.immuni.2005.09.015
[22]  Liang, Y., Seymour, R.E. and Sundberg, J.P. (2011) Inhibition of NF-κB Signaling Retards Eosinophilic Dermatitis in Sharpin-Deficient Mice. Journal of Investigative Dermatology, 131, 141-149.
https://doi.org/10.1038/jid.2010.259
[23]  Chen, R., Li, M., Zhang, Y., Zhou, Q. and Shu, H. (2012) The E3 Ubiquitin Ligase MARCH8 Negatively Regulates IL-1β-Induced NF-κB Activation by Targeting the IL1RAP Coreceptor for Ubiquitination and Degradation. Proceedings of the National Academy of Sciences, 109, 14128-14133.
https://doi.org/10.1073/pnas.1205246109
[24]  Kobayashi, K., Hernandez, L.D., Galán, J.E., Janeway, C.A., Medzhitov, R. and Flavell, R.A. (2002) IRAK-M Is a Negative Regulator of Toll-Like Receptor Signaling. Cell, 110, 191-202.
https://doi.org/10.1016/s0092-8674(02)00827-9
[25]  Muzio, M., Ni, J., Feng, P. and Dixit, V.M. (1997) IRAK (Pelle) Family Member IRAK-2 and Myd88 as Proximal Mediators of IL-1 Signaling. Science, 278, 1612-1615.
https://doi.org/10.1126/science.278.5343.1612
[26]  Burns, K., Janssens, S., Brissoni, B., Olivos, N., Beyaert, R. and Tschopp, J. (2003) Inhibition of Interleukin 1 Receptor/Toll-Like Receptor Signaling through the Alternatively Spliced, Short Form of Myd88 Is Due to Its Failure to Recruit IRAK-4. The Journal of Experimental Medicine, 197, 263-268.
https://doi.org/10.1084/jem.20021790
[27]  Koeppel, M., van Heeringen, S.J., Kramer, D., Smeenk, L., Janssen-Megens, E., Hartmann, M., et al. (2011) Crosstalk between C-Jun and Tap73α/β Contributes to the Apoptosis-Survival Balance. Nucleic Acids Research, 39, 6069-6085.
https://doi.org/10.1093/nar/gkr028
[28]  Lockett, A., Goebl, M.G. and Harrington, M.A. (2008) Transient Membrane Recruitment of IRAK-1 in Response to LPS and IL-1β Requires TNF R1. American Journal of Physiology-Cell Physiology, 295, C313-C323.
https://doi.org/10.1152/ajpcell.00500.2007
[29]  Ågerstam, H., Lilljebjörn, H., Rissler, M., Sandén, C. and Fioretos, T. (2022) IL1RAP Is Expressed in Several Subtypes of Pediatric Acute Lymphoblastic Leukemia and Can Be Used as a Target to Eliminate ETV6::RUNX1-Positive Leukemia Cells in Preclinical Models. Haematologica, 108, 599-604.
https://doi.org/10.3324/haematol.2022.281059
[30]  Eisenwort, G., Sadovnik, I., Keller, A., Ivanov, D., Peter, B., Berger, D., et al. (2021) Phenotypic Characterization of Leukemia-Initiating Stem Cells in Chronic Myelomonocytic Leukemia. Leukemia, 35, 3176-3187.
https://doi.org/10.1038/s41375-021-01227-z
[31]  Mitchell, K., Barreyro, L., Todorova, T.I., Taylor, S.J., Antony-Debré, I., Narayanagari, S., et al. (2018) IL1RAP Potentiates Multiple Oncogenic Signaling Pathways in Aml. Journal of Experimental Medicine, 215, 1709-1727.
https://doi.org/10.1084/jem.20180147
[32]  De Boer, B., Sheveleva, S., Apelt, K., Vellenga, E., Mulder, A.B., Huls, G., et al. (2020) The IL1-IL1RAP Axis Plays an Important Role in the Inflammatory Leukemic Niche That Favors Acute Myeloid Leukemia Proliferation over Normal Hematopoiesis. Haematologica, 106, 3067-3078.
https://doi.org/10.3324/haematol.2020.254987
[33]  Herrmann, H., Sadovnik, I., Cerny-Reiterer, S., Rülicke, T., Stefanzl, G., Willmann, M., et al. (2014) Dipeptidylpeptidase IV (CD26) Defines Leukemic Stem Cells (LSC) in Chronic Myeloid Leukemia. Blood, 123, 3951-3962.
https://doi.org/10.1182/blood-2013-10-536078
[34]  Järås, M., Johnels, P., Hansen, N., Ågerstam, H., Tsapogas, P., Rissler, M., et al. (2010) Isolation and Killing of Candidate Chronic Myeloid Leukemia Stem Cells by Antibody Targeting of IL-1 Receptor Accessory Protein. Proceedings of the National Academy of Sciences, 107, 16280-16285.
https://doi.org/10.1073/pnas.1004408107
[35]  Ågerstam, H., Hansen, N., von Palffy, S., Sandén, C., Reckzeh, K., Karlsson, C., et al. (2016) IL1RAP Antibodies Block IL-1-Induced Expansion of Candidate CML Stem Cells and Mediate Cell Killing in Xenograft Models. Blood, 128, 2683-2693.
https://doi.org/10.1182/blood-2015-11-679985
[36]  Landberg, N., Hansen, N., Askmyr, M., Ågerstam, H., Lassen, C., Rissler, M., et al. (2015) IL1RAP Expression as a Measure of Leukemic Stem Cell Burden at Diagnosis of Chronic Myeloid Leukemia Predicts Therapy Outcome. Leukemia, 30, 255-258.
https://doi.org/10.1038/leu.2015.135
[37]  Robbrecht, D., Jungels, C., Sorensen, M.M., Spanggaard, I., Eskens, F., Fretland, S.Ø., et al. (2021) First-in-Human Phase 1 Dose-Escalation Study of CAN04, a First-In-Class Interleukin-1 Receptor Accessory Protein (IL1RAP) Antibody in Patients with Solid Tumours. British Journal of Cancer, 126, 1010-1017.
https://doi.org/10.1038/s41416-021-01657-7
[38]  Zhang, Y., Chen, X., Wang, H., Gordon-Mitchell, S., Sahu, S., Bhagat, T.D., et al. (2022) Innate Immune Mediator, Interleukin-1 Receptor Accessory Protein (IL1RAP), Is Expressed and Pro-Tumorigenic in Pancreatic Cancer. Journal of Hematology & Oncology, 15, Article No. 70.
https://doi.org/10.1186/s13045-022-01286-4
[39]  Herremans, K.M., Szymkiewicz, D.D., Riner, A.N., Bohan, R.P., Tushoski, G.W., Davidson, A.M., et al. (2022) The Interleukin-1 Axis and the Tumor Immune Microenvironment in Pancreatic Ductal Adenocarcinoma. Neoplasia, 28, Article ID: 100789.
https://doi.org/10.1016/j.neo.2022.100789
[40]  Lv, Q., Xia, Q., Li, A. and Wang, Z. (2021) The Potential Role of IL1RAP on Tumor Microenvironment-Related Inflammatory Factors in Stomach Adenocarcinoma. Technology in Cancer Research & Treatment, 20, 1-11.
https://doi.org/10.1177/1533033821995282
[41]  Rehman, A., Olsson, P.O., Akhtar, A., Padhiar, A.A., Liu, H., Dai, Y., et al. (2022) Systematic Molecular Analysis of the Human Secretome and Membrane Proteome in Gastrointestinal Adenocarcinomas. Journal of Cellular and Molecular Medicine, 26, 3329-3342.
https://doi.org/10.1111/jcmm.17338
[42]  Liu, F., Dai, M., Xu, Q., Zhu, X., Zhou, Y., Jiang, S., et al. (2018) SRSF10-Mediated IL1RAP Alternative Splicing Regulates Cervical Cancer Oncogenesis via mIL1RAP-NF-κB-Cd47 Axis. Oncogene, 37, 2394-2409.
https://doi.org/10.1038/s41388-017-0119-6
[43]  Ghittoni, R., Accardi, R., Hasan, U., Gheit, T., Sylla, B. and Tommasino, M. (2009) The Biological Properties of E6 and E7 Oncoproteins from Human Papillomaviruses. Virus Genes, 40, 1-13.
https://doi.org/10.1007/s11262-009-0412-8
[44]  Kozlovski, I., Siegfried, Z., Amar-Schwartz, A. and Karni, R. (2017) The Role of RNA Alternative Splicing in Regulating Cancer Metabolism. Human Genetics, 136, 1113-1127.
https://doi.org/10.1007/s00439-017-1803-x
[45]  Venables, J.P., Klinck, R., Koh, C., Gervais-Bird, J., Bramard, A., Inkel, L., et al. (2009) Cancer-Associated Regulation of Alternative Splicing. Nature Structural & Molecular Biology, 16, 670-676.
https://doi.org/10.1038/nsmb.1608
[46]  Wang, Y., Cheng, S., Fleishman, J.S., Chen, J., Tang, H., Chen, Z., et al. (2024) Targeting Anoikis Resistance as a Strategy for Cancer Therapy. Drug Resistance Updates, 75, Article ID: 101099.
https://doi.org/10.1016/j.drup.2024.101099
[47]  Mendoza-Naranjo, A., El-Naggar, A., Wai, D.H., Mistry, P., Lazic, N., Ayala, F.R.R., et al. (2013) ERBB4 Confers Metastatic Capacity in Ewing Sarcoma. EMBO Molecular Medicine, 5, 1087-1102.
https://doi.org/10.1002/emmm.201202343
[48]  Zhang, H., Hughes, C.S., Li, W., He, J., Surdez, D., El-Naggar, A.M., et al. (2021) Proteomic Screens for Suppressors of Anoikis Identify IL1RAP as a Promising Surface Target in Ewing Sarcoma. Cancer Discovery, 11, 2884-2903.
https://doi.org/10.1158/2159-8290.cd-20-1690
[49]  Alcantara Llaguno, S.R. and Parada, L.F. (2016) Cell of Origin of Glioma: Biological and Clinical Implications. British Journal of Cancer, 115, 1445-1450.
https://doi.org/10.1038/bjc.2016.354
[50]  Li, F., Zhang, W., Wang, M. and Jia, P. (2020) IL1RAP Regulated by PRPRD Promotes Gliomas Progression via Inducing Neuronal Synapse Development and Neuron Differentiation in Vitro. PathologyResearch and Practice, 216, Article ID: 153141.
https://doi.org/10.1016/j.prp.2020.153141
[51]  He, J., Li, X., Zhu, W., Yu, Y. and Gong, J. (2017) Research of Differential Expression of Sil1rap in Low-Grade Gliomas between Children and Adults. Brain Tumor Pathology, 35, 19-28.
https://doi.org/10.1007/s10014-017-0304-x
[52]  Zheng, P., Zhang, Y., Zhang, B., Wang, Y., Wang, Y. and Yang, L. (2018) Synthetic Human Monoclonal Antibody Targets Hil1 Receptor Accessory Protein Chain with Therapeutic Potential in Triple-Negative Breast Cancer. Biomedicine & Pharmacotherapy, 107, 1064-1073.
https://doi.org/10.1016/j.biopha.2018.07.099

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133