全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

视觉工作记忆与注意力:从理论到神经机制
Visual Working Memory and Attention: From Theory to Neural Mechanisms

DOI: 10.12677/ap.2025.154180, PP. 46-53

Keywords: 视觉工作记忆,注意力,神经机制,认知控制
Visual Working Memory
, Attention, Neural Mechanisms, Cognitive Control

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文探讨了视觉工作记忆(VWM)与注意力的关系、理论基础、神经机制及未来研究方向。VWM是短暂存储视觉信息的系统,容量有限且具灵活性。注意力帮助选择和过滤信息,与VWM互相作用。经典理论关注存储结构和容量限制,现代理论强调动态过程和神经机制。神经研究表明,PFC和PPC在VWM和注意力中功能不同,小脑也参与视觉空间认知。未来研究将开发多模态同步记录平台,设计生态化实验范式,建立现实场景注意力分配预测模型。
This paper investigates the relationship between visual working memory (VWM) and attention, theoretical foundations, neural mechanisms, and future research directions. VWM, a system for transient storage of visual information, is characterized by limited capacity and functional flexibility. Attention facilitates the selection and filtering of information, interacting bidirectionally with VWM. Classical theories primarily focus on static storage structures and capacity constraints, whereas modern theories emphasize dynamic resource allocation processes and the integration of neural mechanisms. Neuroimaging studies reveal distinct functional roles of the prefrontal cortex (PFC) and posterior parietal cortex (PPC) in VWM and attentional control, with emerging evidence implicating the cerebellum in visuospatial cognition. Future research should prioritize the development of multimodal synchronous recording platforms, the design of ecologically valid experimental paradigms, and the establishment of predictive models for attentional allocation in real-world scenarios. Future research will develop multimodal synchronous recording platforms, design ecological experimental paradigms, and establish attention-allocation prediction models for real-world scenarios.

References

[1]  夏明睿, 贺永(2022). 功能磁共振脑成像机遇和挑战——中国十年来发展成果及展望. 磁共振成像, 13(10), 23-36, 65.
[2]  Allen, R. J., & Ueno, T. (2018). Multiple High-Reward Items Can Be Prioritized in Working Memory but with Greater Vulnerability to Interference. Attention, Perception, & Psychophysics, 80, 1731-1743.
https://doi.org/10.3758/s13414-018-1543-6
[3]  Baddeley, A. D., & Hitch, G. (1974). Working Memory. Psychology of Learning and Motivation, 8, 47-89.
https://doi.org/10.1016/s0079-7421(08)60452-1
[4]  Brissenden, J. A., Tobyne, S. M., Osher, D. E., Levin, E. J., Halko, M. A., & Somers, D. C. (2018). Topographic Cortico-Cerebellar Networks Revealed by Visual Attention and Working Memory. Current Biology, 28, 3364-3372.e5.
https://doi.org/10.1016/j.cub.2018.08.059
[5]  Cowan, N. (2000). The Magical Number 4 in Short-Term Memory: A Reconsideration of Mental Storage Capacity. Behavioral and Brain Sciences, 24, 87-114.
https://doi.org/10.1017/s0140525x01003922
[6]  Cowan, N., Elliott, E. M., Saults, J. S., & Mclaughlin, J. A. (2006). The Relationship between Working Memory Capacity and Attentional Control. Journal of Memory and Language, 54, 1-19.
[7]  Cowan, N., Elliott, E. M., Saults, J. S., & Mclaughlin, J. A. (2005). On the Capacity for Attention: The Neuroanatomy of Individual Differences. Journal of Experimental Psychology: General, 134, 1-26.
[8]  Desimone, R., & Duncan, J. (1995). Neural Mechanisms of Selective Visual Attention. Annual Review of Neuroscience, 18, 193-222.
https://doi.org/10.1146/annurev.ne.18.030195.001205
[9]  Diaz, J. A., & Spitzer, B. (2021). Dissociating the Roles of α Oscillation Sub-Bands in Visual Working Memory. NeuroImage, 230, 1-12.
[10]  Dube, B., Emrich, S. M., & Al-Aidroos, N. (2017). More than a Filter: Feature-Based Attention Regulates the Distribution of Visual Working Memory Resources. Journal of Experimental Psychology: Human Perception and Performance, 43, 1843-1854.
https://doi.org/10.1037/xhp0000428
[11]  Formica, S., Palenciano, A. F., Vermeylen, L., Myers, N. E., Brass, M., & González-García, C. (2024). Internal Attention Modulates the Functional State of Novel Stimulus-Response Associations in Working Memory. Cognition, 245, Article ID: 105739.
https://doi.org/10.1016/j.cognition.2024.105739
[12]  Günseli, E., Fahrenfort, J. J., van Moorselaar, D., Daoultzis, K. C., Meeter, M., & Olivers, C. N. L. (2019). EEG Dynamics Reveal a Dissociation between Storage and Selective Attention within Working Memory. Scientific Reports, 9, Article No. 13499.
https://doi.org/10.1038/s41598-019-49577-0
[13]  Hajonides, J. E., Ede, F., van Stokes, M. G., & Nobre, A. C. (2020). Comparing the Prioritization of Items and Feature-Dimensions in Visual Working Memory. Journal of Vision, 20, 25.
[14]  Hamblin-Frohman, J., & Becker, S. I. (2023). Attentional Selection Is a Sufficient Cause for Visual Working Memory Interference. Journal of Vision, 23, 15.
[15]  Huang, L. (2025). Comprehensive Exploration of Visual Working Memory Mechanisms Using Large-Scale Behavioral Experiment. Nature Communications, 16, Article No. 1383.
https://doi.org/10.1038/s41467-025-56700-5
[16]  Kim, S., & Cho, Y. S. (2024). Feature-based Attentional Control for Distractor Suppression. Attention, Perception, & Psychophysics, 86, 1075-1085.
https://doi.org/10.3758/s13414-024-02858-x
[17]  Kong, G., & Fougnie, D. (2019). Visual Search within Working Memory. Journal of Experimental Psychology: General, 148, 1688-1700.
https://doi.org/10.1037/xge0000555
[18]  Li, D., Zhao, C., Guo, J., Kong, Y., Li, H., Du, B. et al. (2021). Visual Working Memory Guides Spatial Attention: Evidence from α Oscillations and Sustained Potentials. Neuropsychologia, 151, Article ID: 107719.
https://doi.org/10.1016/j.neuropsychologia.2020.107719
[19]  Li, S., Cai, Y., Liu, J., Li, D., Feng, Z., Chen, C. et al. (2017). Dissociated Roles of the Parietal and Frontal Cortices in the Scope and Control of Attention during Visual Working Memory. NeuroImage, 149, 210-219.
https://doi.org/10.1016/j.neuroimage.2017.01.061
[20]  Liang, G., & Scolari, M. (2020). Limited Interactions between Space-and Feature-Based Attention in Visually Sparse Displays. Journal of Vision, 20, 1-21.
https://doi.org/10.1167/jov.20.4.5
[21]  Liang, T., Chen, X., Ye, C., Zhang, J., & Liu, Q. (2019). Electrophysiological Evidence Supports the Role of Sustained Visuospatial Attention in Maintaining Visual WM Contents. International Journal of Psychophysiology, 146, 54-62.
https://doi.org/10.1016/j.ijpsycho.2019.09.011
[22]  Luck, S. J., & Vogel, E. K. (1997). The Capacity of Visual Working Memory for Features and Conjunctions. Nature, 390, 279-281.
https://doi.org/10.1038/36846
[23]  Luck, S. J., & Vogel, E. K. (2013). Visual Working Memory Capacity: From Psychophysics and Neurobiology to Individual Differences. Trends in Cognitive Sciences, 17, 391-400.
https://doi.org/10.1016/j.tics.2013.06.006
[24]  Luck, S. J., Hillyard, S. A., Mouloua, M., & Hawkins, H. L. (1996). Mechanisms of Visual-Spatial Attention: Resource Allocation or Uncertainty Reduction? Journal of Experimental Psychology: Human Perception and Performance, 22, 725-737.
https://doi.org/10.1037//0096-1523.22.3.725
[25]  Martin-Garcia, O., da Silva, P. H. R., De Smet, S., De Witte, S., Brunoni, A. R., Vanderhasselt, M. et al. (2025). Baseline Gray Matter Volume Associates with Working Memory Performance after Prefrontal Transcranial Direct Current Stimulation. Behavioural Brain Research, 481, Article ID: 115416.
https://doi.org/10.1016/j.bbr.2025.115416
[26]  McNab, F., & Klingberg, T. (2008). Prefrontal Cortex and Basal Ganglia Control Access to Working Memory. Nature Neuroscience, 11, 103-107.
https://doi.org/10.1038/nn2024
[27]  Olivers, C. N., & Roelfsema, P. R. (2023). Attention for Action in Visual Working Memory. Cortex, 131, 179-194.
[28]  Panichello, M. F., & Buschman, T. J. (2021). Shared Mechanisms Underlie the Control of Working Memory and Attention. Nature, 592, 601-605.
https://doi.org/10.1038/s41586-021-03390-w
[29]  Schneider, D., Barth, A., Getzmann, S., & Wascher, E. (2017). On the Neural Mechanisms Underlying the Protective Function of Retroactive Cuing against Perceptual Interference: Evidence by Event-Related Potentials of the EEG. Biological Psychology, 124, 47-56.
https://doi.org/10.1016/j.biopsycho.2017.01.006
[30]  Schneider, K. A. (1995). Working Memory and Attention: A Combined Approach. Psychological Research, 57, 179-188.
[31]  Schroeder, S. C. Y., Ball, F., & Busch, N. A. (2018). The Role of Alpha Oscillations in Distractor Inhibition during Memory Retention. European Journal of Neuroscience, 48, 2516-2526.
https://doi.org/10.1111/ejn.13852
[32]  van der Meulen, J. H. (2021). Prioritising Feature Representations in Visual Working Memory. Master’s Thesis, University of Oxford.
[33]  Vogel, E. K., & Machizawa, M. G. (2004). Neural Activity Predicts Individual Differences in Visual Working Memory Capacity. Nature, 428, 748-751.
https://doi.org/10.1038/nature02447
[34]  Williams, M., Pouget, P., Boucher, L., & Woodman, G. F. (2013). Visual-Spatial Attention Aids the Maintenance of Object Representations in Visual Working Memory. Memory & Cognition, 41, 698-715.
https://doi.org/10.3758/s13421-013-0296-7
[35]  Woodman, G. F., & Luck, S. J. (2009). Why Is Information Displaced from Visual Working Memory during Visual Search? Visual Cognition, 18, 275-295.
https://doi.org/10.1080/13506280902734326
[36]  Zhan, M., Pallier, C., Agrawal, A., Dehaene, S., & Cohen, L. (2023). Does the Visual Word Form Area Split in Bilingual Readers? a Millimeter-Scale 7-T fMRI Study. Science Advances, 9, eadf6140.
https://doi.org/10.1126/sciadv.adf6140
[37]  Zhong, C., Qu, Z., Yang, N., Sun, M., Wang, Y., & Ding, Y. (2024). Susceptibility to Attentional Capture by Target-Matching Distractors Predicts High Visual Working Memory Capacity. Psychological Science, 35, 1203-1216.
https://doi.org/10.1177/09567976241279520

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133