|
Pure Mathematics 2025
基于加权的分数阶变指数全变差模型研究
|
Abstract:
全变差(Total Variation, TV)模型作为一类重要的图像正则化技术,因其约束图像梯度结构的独特能力,在图像处理与信号分析等领域受到广泛关注。为解决传统TV模型中图像细节丢失与阶梯效应显现等问题。进一步有效保持图像边缘信息并实现重要区域的适度平滑,本文提出一种融合分数阶变指数的改进加权全变差模型。首先,基于log-exp函数特性构建新型加权变指数分数阶全变差模型,通过引入加权函数对图像边缘区域赋予较小权值,而对平滑区域赋予较大权值;其次,运用变分方法推导模型的Euler-Lagrange方程,将优化问题转化为梯度下降流方程进行求解;最后进行了对比实验,结果表明该方法在相关性能上有显著提升,与现有方法相比具有竞争力。
As a prominent image regularization technique, the Total Variation (TV) model has garnered extensive attention due to its unique capability to constrain gradient structures in images. To address the inherent limitations of conventional TV models—such as loss of fine details and emergence of staircase artifacts—this paper proposes an enhanced weighted total variation model that integrates fractional-order variable exponents. The proposed framework aims to preserve edge information effectively while achieving adaptive smoothing in homogeneous regions. First, a novel weighted fractional-order variable-exponent TV model is constructed based on the log-exp function, where edge regions are assigned to smaller regularization weights and smoother areas receive larger weights to balance structural fidelity and noise suppression. Second, variational principles are employed to derive the Euler-Lagrange equation, transforming the optimization problem into a gradient descent flow for numerical implementation. Finally, comparative experiments demonstrate that the proposed method achieves significant improvements in both edge preservation and artifact reduction, exhibiting competitive performance against state-of-the-art techniques in terms of quantitative metrics and visual quality.
[1] | 马云, 曾祥忠. 图像去噪方法探析[J]. 科技与创新, 2016(23): 84, 87. |
[2] | Rudin, L.I., Osher, S. and Fatemi, E. (1992) Nonlinear Total Variation Based Noise Removal Algorithms. Physica D: Nonlinear Phenomena, 60, 259-268. https://doi.org/10.1016/0167-2789(92)90242-f |
[3] | Chan, T.F. and Wong, C.-K. (1998) Total Variation Blind Deconvolution. IEEE Transactions on Image Processing, 7, 370-375. https://doi.org/10.1109/83.661187 |
[4] | Vese, L.A. and Chan, T.F. (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision, 50, 271-293. https://doi.org/10.1023/a:1020874308076 |
[5] | Candès, E.J. (2007) Compressive Sampling. In: Proceedings of the International Congress of Mathematicians Madrid, EMS Press, 1433-1452. https://doi.org/10.4171/022-3/69 |
[6] | 周国栋. 一种抑制图像阶梯效应的改进全变分去噪方法[J]. 计算机应用与软件, 2022, 39(4): 263-268. |
[7] | 葛阳祖. 全变差正则化模型的噪声图像复原算法[D]: [硕士学位论文]. 兰州: 西北师范大学, 2022. |
[8] | 谈晶圩, 杨敏. 基于改进的全变分图像去噪算法研究[J]. 南京邮电大学学报(自然科学版), 2020, 40(2): 95-100. |
[9] | 郭杰斌. 图像复原与分割的偏微分方程模型与数值实现[D]: [博士学位论文]. 重庆: 重庆大学, 2020. |
[10] | 施帅威. 保边保细节图像去噪的各向异性扩散模型[D]: [硕士学位论文]. 重庆: 重庆大学, 2022. |
[11] | Tikhonov, A.N. and Arsenin, V.Y. (1977) Solutions of Ill Posed Problems. Wiley. |
[12] | You, Y.-L., Xu, W.Y., Tannenbaum, A. and Kaveh, M. (1996) Behavioral Analysis of Anisotropic Diffusion in Image Processing. IEEE Transactions on Image Processing, 5, 1539-1553. https://doi.org/10.1109/83.541424 |
[13] | Strong, D. and Chan, T. (2003) Edge-Preserving and Scale-Dependent Properties of Total Variation Regularization. Inverse Problems, 19, S165-S187. https://doi.org/10.1088/0266-5611/19/6/059 |
[14] | Nikolova, M. (2004) Weakly Constrained Minimization: Application to the Estimation of Images and Signals Involving Constant Regions. Journal of Mathematical Imaging and Vision, 21, 155-175. https://doi.org/10.1023/b:jmiv.0000035180.40477.bd |
[15] | Blomgren, P., Chan, T.F., Mulet, P. and Wong, C.K. (1997) Total Variation Image Restoration: Numerical Methods and Extensions. Proceedings of International Conference on Image Processing, 3, 384-387. https://doi.org/10.1109/icip.1997.632128 |
[16] | Blomgren, P. and Chan, T.F. (1998) Color TV: Total Variation Methods for Restoration of Vector-Valued Images. IEEE Transactions on Image Processing, 7, 304-309. https://doi.org/10.1109/83.661180 |
[17] | Chen, Y., Levine, S. and Rao, M. (2006) Variable Exponent, Linear Growth Functionals in Image Restoration. SIAM Journal on Applied Mathematics, 66, 1383-1406. https://doi.org/10.1137/050624522 |
[18] | Li, F., Li, Z. and Pi, L. (2010) Variable Exponent Functionals in Image Restoration. Applied Mathematics and Computation, 216, 870-882. https://doi.org/10.1016/j.amc.2010.01.094 |
[19] | Harjulehto, P., Hästö, P., Latvala, V. and Toivanen, O. (2013) Critical Variable Exponent Functionals in Image Restoration. Applied Mathematics Letters, 26, 56-60. https://doi.org/10.1016/j.aml.2012.03.032 |
[20] | Bai, J. and Feng, X. (2007) Fractional-Order Anisotropic Diffusion for Image Denoising. IEEE Transactions on Image Processing, 16, 2492-2502. https://doi.org/10.1109/tip.2007.904971 |
[21] | 王迎美, 王桢东, 李功胜. 基于变指数分数阶全变差和整数阶全变差的图像恢复算法[J]. 山东大学学报(理学版), 2019, 54(11): 115-126. |
[22] | 刘灿. 几类分数阶方程的半正交B样条小波方法[D]: [博士学位论文]. 哈尔滨: 哈尔滨工业大学, 2022. |
[23] | Lazzaro, D., Loli Piccolomini, E. and Zama, F. (2019) A Fast Splitting Method for Efficient Split Bregman Iterations. Applied Mathematics and Computation, 357, 139-146. https://doi.org/10.1016/j.amc.2019.03.065 |
[24] | Shu, X., Han, J., Zhan, Y. and Wang, Z. (2022) An Improved Image Denoising Method Based on Variable-Order Fractional-Order Anisotropic Diffusion. 2022 7th International Conference on Signal and Image Processing (ICSIP), Suzhou, 20-22 July 2022, 468-472. https://doi.org/10.1109/icsip55141.2022.9886618 |