全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Eutrophication of Estuarine and Coastal Marine Environments: An Emerging Climatic-Driven Paradigm Shift

DOI: 10.4236/oje.2025.154017, PP. 289-324

Keywords: Coastal Ecosystems, Anthropogenic Activities, Climate Change, Nutrient Enrichment, Organic Matter Loading, Eutrophication, Hypoxia, Interactive Factors, Ecosystem Impacts, Assessment, Management

Full-Text   Cite this paper   Add to My Lib

Abstract:

Estuaries and coastal marine waters are complex dynamic environments that are susceptible to the stresses and vagaries of climatic and non-climatic drivers of change. Climate change is an increasingly important factor in the development of eutrophication in estuarine and coastal marine environments. The additive, synergistic, and antagonistic interactions of climatic drivers of change and non-climatic anthropogenic and natural stressors create deleterious conditions that degrade these environments and their biotic communities. Climate-change mediated increases in precipitation, land runoff, river discharges, and temperature result in greater nutrient and organic matter loading, biogeochemical fluxes, enhanced thermal and salinity stratification, altered water circulation, harmful algal blooms, water column light attenuation, and deteriorated sediment and water quality in many estuarine and coastal marine ecosystems. The frequency, intensity, and extent of hypoxia are increasing in these ecosystems as well, where climate change amplifies the effects of eutrophication, leading to deoxygenation and extensive mortality of benthic organisms, a decline of fisheries, and damage to essential habitats. As temperature, nutrient enrichment, and organic matter supply continue to increase in many coastal regions worldwide, there are greater costs incurred for mitigation, adaptation, and resilience programs needed to deal with their adverse effects to improve the viability and sustainability of estuarine and coastal marine ecosystems, especially in urbanized areas. Coastal ecosystems are in a state of flux driven by climatic forcings that are causing a paradigm shift in their assessment and management. To this end, coastal managers are implementing ecosystem-based management programs using holistic, multidisciplinary integrated and unifying frameworks that link ecological, physical, and socio-economic elements to address the causes, consequences, and responses of anthropogenic impacts to maintain estuarine and coastal marine ecosystems in a healthy, productive, and resilient condition.

References

[1]  Doney, S.C., Ruckelshaus, M., Emmett Duffy, J., Barry, J.P., Chan, F., English, C.A., et al. (2012) Climate Change Impacts on Marine Ecosystems. Annual Review of Marine Science, 4, 11-37.
https://doi.org/10.1146/annurev-marine-041911-111611
[2]  Statham, P.J. (2012) Nutrients in Estuaries—An Overview and the Potential Impacts of Climate Change. Science of the Total Environment, 434, 213-227.
https://doi.org/10.1016/j.scitotenv.2011.09.088
[3]  Robins, P.E., Skov, M.W., Lewis, M.J., Giménez, L., Davies, A.G., Malham, S.K., et al. (2016) Impact of Climate Change on UK Estuaries: A Review of Past Trends and Potential Projections. Estuarine, Coastal and Shelf Science, 169, 119-135.
https://doi.org/10.1016/j.ecss.2015.12.016
[4]  Simeoni, C., Furlan, E., Pham, H.V., Critto, A., de Juan, S., Trégarot, E., et al. (2023) Evaluating the Combined Effect of Climate and Anthropogenic Stressors on Marine Coastal Ecosystems: Insights from a Systematic Review of Cumulative Impact Assessment Approaches. Science of the Total Environment, 861, Article ID: 160687.
https://doi.org/10.1016/j.scitotenv.2022.160687
[5]  Day, J.W., Rybczyk, J.M., Mann, M.E., and Stephens, J.R. (2024) Climate Change: Effects, Causes, Consequences, Physical Hydromorphological, Ecophysiological, and Biogeochemical Changes in Coastal Wetlands and Waters. In: Kennish, M.J. and El-liott, M., Eds., Anthropogenic Uses, Effects, and Solutions on Estuarine and Coastal Systems, Vol. 6, Treatise on Estuarine and Coastal Science, 2nd Edition, Elsevier, 626-641.
[6]  Kennish, M.J. (2024) Anthropogenic Drivers of Estuarine Change. In: Kennish, M.J., Paerl, H.W., and Crosswell, J.R., Eds., Climate Change and Estuaries, CRC Press, 75-98.
https://doi.org/10.1201/9781003126096
[7]  Kennish, M.J. (2024) Nutrient Inputs and Organic Carbon Enrichment: Causes and Consequences of Eutrophication. Treatise on Estuarine and Coastal Science (Second Edition), 6, 218-258.
https://doi.org/10.1016/b978-0-323-90798-9.00015-9
[8]  Kennish, M.J., Paerl, H.W., and Crosswell, J.R. (2024) Introduction to Climate Change and Estuaries. In: Kennish, M.J., Paerl, H.W., and Crosswell, J.R., Eds., Climate Change and Estuaries, CRC Press, 3-22.
https://doi.org/10.1201/9781003126096
[9]  Kennish, M., Paerl, H., Crosswell, J. and Moore, K. (2024) Estuaries Face a Stormy Future. American Scientist, 112, 302-309.
https://doi.org/10.1511/2024.112.5.302
[10]  Testa, J.M., Carstensen, J., Laurent, A. and Li, M. (2023) Hypoxia and Climate Change in Estuaries. In: Kennish, M.J., Paerl, H.W. and Crosswell, J.R., Eds., Climate Change and Estuaries, CRC Press, 143-170.
https://doi.org/10.1201/9781003126096-9
[11]  Galparsoro, I., Montero, N., Mandiola, G., Menchaca, I., Borja, Á., Flannery, W., et al. (2025) Assessment Tool Addresses Implementation Challenges of Ecosystem-Based Management Principles in Marine Spatial Planning Processes. Communications Earth & Environment, 6, Article No. 55.
https://doi.org/10.1038/s43247-024-01975-7
[12]  Kennish, M.J. (2002) Environmental Threats and Environmental Future of Estuaries. Environmental Conservation, 29, 78-107.
https://doi.org/10.1017/s0376892902000061
[13]  Kennish, M.J., Brush, M.J. and Moore, K.A. (2014) Drivers of Change in Shallow Coastal Photic Systems: An Introduction to a Special Issue. Estuaries and Coasts, 37, 3-19.
https://doi.org/10.1007/s12237-014-9779-4
[14]  Kennish, M.J. (2019) Practical Handbook of Marine Science. 4th Edition, CRC Press.
[15]  Lotze, H.K., Lenihan, H.S., Bourque, B.J., Bradbury, R.H., Cooke, R.G., Kay, M.C., et al. (2006) Depletion, Degradation, and Recovery Potential of Estuaries and Coastal Seas. Science, 312, 1806-1809.
https://doi.org/10.1126/science.1128035
[16]  Day Jr., J.W., Kemp, W.M., Yáñez-Arancibia, A.Y. and Crump, B.C. (2012) Estuarine Ecology. 2nd Edition, Wiley-Blackwell.
[17]  Rabalais, N., Cai, W., Carstensen, J., Conley, D., Fry, B., Hu, X., et al. (2014) Eutrophication-driven Deoxygenation in the Coastal Ocean. Oceanography, 27, 172-183.
https://doi.org/10.5670/oceanog.2014.21
[18]  Elliott, M. and Kennish, M.J. (2024) A Synthesis of Anthropogenic Impacts and Solutions in Estuarine and Coastal Environments. Treatise on Estuarine and Coastal Science (Second Edition), 6, 1-56.
https://doi.org/10.1016/b978-0-323-90798-9.00126-8
[19]  Paerl, H.W. (2024) Climate Change, Phytoplankton, and HABs. In: Kennish, M.J., Paerl, H.W. and Crosswell, J.R., Eds., Climate Change and Estuaries, CRC Press, 315-334.
https://doi.org/10.1201/9781003126096
[20]  Crain, C.M., Kroeker, K. and Halpern, B.S. (2008) Interactive and Cumulative Effects of Multiple Human Stressors in Marine Systems. Ecology Letters, 11, 1304-1315.
https://doi.org/10.1111/j.1461-0248.2008.01253.x
[21]  Lonsdale, J., Nicholson, R., Judd, A., Elliott, M. and Clarke, C. (2020) A Novel Approach for Cumulative Impacts Assessment for Marine Spatial Planning. Environmental Science & Policy, 106, 125-135.
https://doi.org/10.1016/j.envsci.2020.01.011
[22]  Borja, A., Elliott, M., Teixeira, H., Stelzenmüller, V., Katsanevakis, S., Coll, M., et al. (2024) Addressing the Cumulative Impacts of Multiple Human Pressures in Marine Systems, for the Sustainable Use of the Seas. Frontiers in Ocean Sustainability, 1, Article 1308125.
https://doi.org/10.3389/focsu.2023.1308125
[23]  Pittman, J. and Armitage, D. (2016) Governance across the Land-Sea Interface: A Systematic Review. Environmental Science & Policy, 64, 9-17.
https://doi.org/10.1016/j.envsci.2016.05.022
[24]  Elliott, M., Burdon, D., Atkins, J.P., Borja, A., Cormier, R., de Jonge, V.N., et al. (2017) “And DPSIR Begat DAPSI(W)R(M)!”—A Unifying Framework for Marine Environmental Management. Marine Pollution Bulletin, 118, 27-40.
https://doi.org/10.1016/j.marpolbul.2017.03.049
[25]  Elliott, M., Borja, Á. and Cormier, R. (2020) Managing Marine Resources Sustainably: A Proposed Integrated Systems Analysis Approach. Ocean & Coastal Management, 197, Article ID: 105315.
https://doi.org/10.1016/j.ocecoaman.2020.105315
[26]  Elliott, M., Borja, Á. and Cormier, R. (2023) Managing Marine Resources Sustainably—Ecological, Societal and Governance Connectivity, Coherence and Equivalence in Complex Marine Transboundary Regions. Ocean & Coastal Management, 245, Article ID: 106875.
https://doi.org/10.1016/j.ocecoaman.2023.106875
[27]  Cronin, T.M. (2016) Climate Change. In: Kennish, M.J., Ed., Encyclopedia of Estuaries, Springer, 122-128.
https://doi.org/10.1007/978-94-017-8801-4
[28]  Intergovernmental Panel on Climate Change (IPCC) (2021) Climate Change 2021: The Physical Science Basis. In: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., et al., Eds., Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.
https://doi.org/10.1017/9781009157896
[29]  He, Q. and Silliman, B.R. (2019) Climate Change, Human Impacts, and Coastal Ecosystems in the Anthropocene. Current Biology, 29, R1021-R1035.
https://doi.org/10.1016/j.cub.2019.08.042
[30]  Cloern, J. (2001) Our Evolving Conceptual Model of the Coastal Eutrophication Problem. Marine Ecology Progress Series, 210, 223-253.
https://doi.org/10.3354/meps210223
[31]  Cloern, J.E., Abreu, P.C., Carstensen, J., Chauvaud, L., Elmgren, R., Grall, J., et al. (2015) Human Activities and Climate Variability Drive Fast-Paced Change across the World’s Estuarine-Coastal Ecosystems. Global Change Biology, 22, 513-529.
https://doi.org/10.1111/gcb.13059
[32]  Kennish, M.J. (2015) Eutrophication. In: Kennish, M.J., Ed., Encyclopedia of Earth Sciences Series, Springer, 304-311.
https://doi.org/10.1007/978-94-017-8801-4_2
[33]  Paerl, H.W., Valdes-Weaver, L.M., Joyner, A.R. and Winkelmann, V. (2007) Phytoplankton Indicators of Ecological Change in the Eutrophying Pamlico Sound System, North Carolina. Ecological Applications, 17, S88-S101.
https://doi.org/10.1890/05-0840.1
[34]  Paerl, H.W. and Huisman, J. (2009) Climate Change: A Catalyst for Global Expansion of Harmful Cyanobacterial Blooms. Environmental Microbiology Reports, 1, 27-37.
https://doi.org/10.1111/j.1758-2229.2008.00004.x
[35]  Paerl, H.W., Crosswell, J.R., Van Dam, B., Hall, N.S., Rossignol, K.L., Osburn, C.L., et al. (2018) Two Decades of Tropical Cyclone Impacts on North Carolina’s Estuarine Carbon, Nutrient and Phytoplankton Dynamics: Implications for Biogeochemical Cycling and Water Quality in a Stormier World. Biogeochemistry, 141, 307-332.
https://doi.org/10.1007/s10533-018-0438-x
[36]  Piggott, J.J., Townsend, C.R. and Matthaei, C.D. (2015) Reconceptualizing Synergism and Antagonism among Multiple Stressors. Ecology and Evolution, 5, 1538-1547.
https://doi.org/10.1002/ece3.1465
[37]  Cabral, H., Fonseca, V., Sousa, T. and Costa Leal, M. (2019) Synergistic Effects of Climate Change and Marine Pollution: An Overlooked Interaction in Coastal and Estuarine Areas. International Journal of Environmental Research and Public Health, 16, Article 2737.
https://doi.org/10.3390/ijerph16152737
[38]  Turner, R.E. and Rabalais, N.N. (1994) Coastal Eutrophication Near the Mississippi River Delta. Nature, 368, 619-621.
https://doi.org/10.1038/368619a0
[39]  Breitburg, D.L., Hondorp, D.W., Davias, L.A. and Diaz, R.J. (2009) Hypoxia, Nitrogen, and Fisheries: Integrating Effects across Local and Global Landscapes. Annual Review of Marine Science, 1, 329-349.
https://doi.org/10.1146/annurev.marine.010908.163754
[40]  Rabalais, N.N., Díaz, R.J., Levin, L.A., Turner, R.E., Gilbert, D. and Zhang, J. (2010) Dynamics and Distribution of Natural and Human-Caused Hypoxia. Biogeosciences, 7, 585-619.
https://doi.org/10.5194/bg-7-585-2010
[41]  Diaz, R.J. (2015) Anoxia, Hypoxia, and Dead Zones. In: Kennish, M.J., Ed., Encyclopedia of Earth Sciences Series, Springer, 19-29.
https://doi.org/10.1007/978-94-017-8801-4_82
[42]  Diaz, R.J. and Rosenberg, R. (1995) Marine Benthic Hypoxia: A Review of Its Eco-logical Effects and the Behavioral Responses of Benthic Macrofauna. Oceanography and Marine Biology Annual Review, 33, 245-303.
[43]  Diaz, R.J. and Rosenberg, R. (2008) Spreading Dead Zones and Consequences for Marine Ecosystems. Science, 321, 926-929.
https://doi.org/10.1126/science.1156401
[44]  Levin, L.A., Mendoza, G.F., Neira, C., Giddings, S.N. and Crooks, J.A. (2022) Consequences of Mouth Closure and Hypoxia-Induced State Changes in Low-Inflow Estuaries: Benthic Community and Trait-Based Response. Estuaries and Coasts, 46, 2128-2147.
https://doi.org/10.1007/s12237-022-01132-3
[45]  Hoegh-Guldberg, O., Jacob, D., Taylor, M., Bindi, M., Brown, S., Camilloni, I., et al. (2018) Impacts of 1.5˚C Global Warming on Natural and Human Systems. In: Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., et al., Eds., Global Warming of 1.5°C: IPCC Special Report on Impacts of Global Warming of 1.5°C above Pre-Industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, Cambridge University Press, 175-312.
https://doi.org/10.1017/9781009157940.005
[46]  Bindoff, N.L., Cheung, W.W.L., Kairo, J.G., Arístegui, J., Guinder, V.A., Hallberg, R., et al. (2022) Changing Ocean, Marine Ecosystems, and Dependent Communities. In: Pörtner, H.O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E.S., et al., Eds., IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, Cambridge University Press, 447-587.
https://doi.org/10.1017/9781009157964.007
[47]  Wernberg, T., Thomsen, M.S., Baum, J.K., Bishop, M.J., Bruno, J.F., Coleman, M.A., et al. (2024) Impacts of Climate Change on Marine Foundation Species. Annual Review of Marine Science, 16, 247-282.
https://doi.org/10.1146/annurev-marine-042023-093037
[48]  Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., et al., Eds. (2022) Climate Change 2022: Impacts, Adaptation, and Vulnerability. Cambridge University Press, 3056.
https://doi.org/10.1017/9781009325844
[49]  Wong, P.P., Losada, I.J., Gattuso, J.P., Hinkel, J., Khattabi, A., McInnes, K.L., et al. (2014) Coastal Systems and Low-Lying Areas. In: Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., et al., Eds., Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects, Cambridge University Press, 361-410.
https://doi.org/10.1017/CBO9781107415379.010
[50]  Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tigor, M. and Poloczanska, E. (2019) IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Cambridge University Press.
[51]  Gulev, S.K., Thorne, P.W., Ahn, J., Dentener, F.J., Domingues, C.M., Gerland, S., et al. (2021) Changing State of the Climate System. In: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., et al., Eds., Chapter 2, Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 287-422.
https://doi.org/10.1017/9781009157896.004
[52]  Fox-Kemper, B., Hewitt, H.T., Xiao, C., Aðalgeirsdóttir, G., Drijfhout, S.S., Edwards, T.L., et al. (2021) Ocean, Cryosphere and Sea Level Change. In: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., et al., Eds., Chapter 9, Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 1211-1362.
https://doi.org/10.1017/9781009157896.011
[53]  Lima, F.P. and Wethey, D.S. (2012) Three Decades of High-Resolution Coastal Sea Surface Temperatures Reveal More than Warming. Nature Communications, 3, Article No. 704.
https://doi.org/10.1038/ncomms1713
[54]  Poloczanska, E.S., Burrows, M.T., Brown, C.J., García Molinos, J., Halpern, B.S., Hoegh-Guldberg, O., et al. (2016) Responses of Marine Organisms to Climate Change across Oceans. Frontiers in Marine Science, 3, Article 62.
https://doi.org/10.3389/fmars.2016.00062
[55]  Frid, C.L.J. and Caswell, B.A. (2017) Marine Pollution. Oxford University Press.
https://doi.org/10.1093/oso/9780198726289.001.0001
[56]  Diaz, R.J. (2001) Overview of Hypoxia around the World. Journal of Environmental Quality, 30, 275-281.
https://doi.org/10.2134/jeq2001.302275x
[57]  Breitburg, D. (2002) Effects of Hypoxia, and the Balance between Hypoxia and Enrichment, on Coastal Fishes and Fisheries. Estuaries, 25, 767-781.
https://doi.org/10.1007/bf02804904
[58]  Breitburg, D., Levin, L.A., Oschlies, A., Grégoire, M., Chavez, F.P., Conley, D.J., et al. (2018) Declining Oxygen in the Global Ocean and Coastal Waters. Science, 359, eaam7240.
https://doi.org/10.1126/science.aam7240
[59]  Rabalais, N.N., Turner, R.E., Gupta, B.K.S., Platon, E. and Parsons, M.L. (2007) Sediments Tell the History of Eutrophication and Hypoxia in the Northern Gulf of Mexico. Ecological Applications, 17, S129-S143.
https://doi.org/10.1890/06-0644.1
[60]  U.S. Environmental Protection Agency (2024) Climate Change Indicators in the United States, 5th Edition. EPA 430-R-24-003.
https://www.epa.gov/climate-indicators
[61]  Church, J.A., Woodworth, P.L., Aarup, T., and Wilson, W.S. (2010) Understanding Sea Level Rise and Variability. Wiley-Blackwell.
https://doi.org/10.1002/9781444323276
[62]  Paerl, H.W., Hall, N.S., Hounshell, A.G., Rossignol, K.L., Barnard, M.A., Luettich, R.A., et al. (2020) Recent Increases of Rainfall and Flooding from Tropical Cyclones (TCS) in North Carolina (USA): Implications for Organic Matter and Nutrient Cycling in Coastal Watersheds. Biogeochemistry, 150, 197-216.
https://doi.org/10.1007/s10533-020-00693-4
[63]  Medina, M., Beck, M.W., Hecker, J., Iadevaia, N., Moody, B., Anastasiou, C., et al. (2025) Water Quality Trends and Eutrophication Indicators in a Large Subtropical Estuary: A Case Study of the Greater Charlotte Harbor System in Southwest Florida. Estuaries and Coasts, 48, Article No. 56.
https://doi.org/10.1007/s12237-025-01488-2
[64]  Deegan, L.A., Bowen, J.L., Drake, D., Fleeger, J.W., Friedrichs, C.T., Galván, K.A., et al. (2007) Susceptibility of Salt Marshes to Nutrient Enrichment and Predator Removal. Ecological Applications, 17, S42-S63.
https://doi.org/10.1890/06-0452.1
[65]  Weis, J.S. and Windham-Myers, L. (2024) Environmental Disturbances and Restoration of Salt Marshes. In: Kennish, M. J. and Elliott, M., Eds., Anthropogenic Uses, Effects, and Solutions on Estuarine and Coastal Systems, Volume 6, Treatise on Estuarine and Coastal Science, 2nd Edition, Elsevier, 549-595.
[66]  Justić, D., Rabalais, N.N. and Turner, R.E. (2005) Coupling between Climate Variability and Coastal Eutrophication: Evidence and Outlook for the Northern Gulf of Mexico. Journal of Sea Research, 54, 25-35.
https://doi.org/10.1016/j.seares.2005.02.008
[67]  Howarth, R., Swaney, D., Billen, G., Garnier, J., Hong, B., Humborg, C., et al. (2011) Nitrogen Fluxes from the Landscape Are Controlled by Net Anthropogenic Nitrogen Inputs and by Climate. Frontiers in Ecology and the Environment, 10, 37-43.
https://doi.org/10.1890/100178
[68]  Macías-Tapia, A., Mulholland, M.R., Selden, C.R., Clayton, S., Bernhardt, P.W. and Allen, T.R. (2024) Tidal Flooding Contributes to Eutrophication: Constraining Nonpoint Source Inputs to an Urban Estuary Using a Data-Driven Statistical Model. Estuaries and Coasts, 48, Article No. 36.
https://doi.org/10.1007/s12237-024-01473-1
[69]  Altieri, A.H. and Gedan, K.B. (2014) Climate Change and Dead Zones. Global Change Biology, 21, 1395-1406.
https://doi.org/10.1111/gcb.12754
[70]  Sinha, E., Michalak, A.M. and Balaji, V. (2017) Eutrophication Will Increase during the 21st Century as a Result of Precipitation Changes. Science, 357, 405-408.
https://doi.org/10.1126/science.aan2409
[71]  Patrício, J., Elliott, M., Mazik, K., Papadopoulou, K. and Smith, C.J. (2016) DPSIR—Two Decades of Trying to Develop a Unifying Framework for Marine Environmental Management? Frontiers in Marine Science, 3, Article 177.
https://doi.org/10.3389/fmars.2016.00177
[72]  Hammar, L., Molander, S., Pålsson, J., Schmidtbauer Crona, J., Carneiro, G., Johansson, T., et al. (2020) Cumulative Impact Assessment for Ecosystem-Based Marine Spatial Planning. Science of the Total Environment, 734, Article ID: 139024.
https://doi.org/10.1016/j.scitotenv.2020.139024
[73]  Cormier, R., Elliott, M. and Borja, Á. (2022) Managing Marine Resources Sustainably—The ‘Management Response-Footprint Pyramid’ Covering Policy, Plans and Technical Measures. Frontiers in Marine Science, 9, Article 869992.
https://doi.org/10.3389/fmars.2022.869992
[74]  Rabalais, N.N., Turner, R.E., Díaz, R.J. and Justić, D. (2009) Global Change and Eutrophication of Coastal Waters. ICES Journal of Marine Science, 66, 1528-1537.
https://doi.org/10.1093/icesjms/fsp047
[75]  Boesch, D.F. (2002) Challenges and Opportunities for Science in Reducing Nutrient Over-Enrichment of Coastal Ecosystems. Estuaries, 25, 886-900.
https://doi.org/10.1007/bf02804914
[76]  Howarth, R.W. and Marino, R. (2006) Nitrogen as the Limiting Nutrient for Eutrophication in Coastal Marine Ecosystems: Evolving Views over Three Decades. Limnology and Oceanography, 51, 364-376.
https://doi.org/10.4319/lo.2006.51.1_part_2.0364
[77]  Howarth, R., Chan, F., Conley, D.J., Garnier, J., Doney, S.C., Marino, R., et al. (2011) Coupled Biogeochemical Cycles: Eutrophication and Hypoxia in Temperate Estuaries and Coastal Marine Ecosystems. Frontiers in Ecology and the Environment, 9, 18-26.
https://doi.org/10.1890/100008
[78]  Nixon, S.W. (1995) Coastal Marine Eutrophication: A Definition, Social Causes, and Future Concerns. Ophelia, 41, 199-219.
https://doi.org/10.1080/00785236.1995.10422044
[79]  Nixon, S.W. (2009) Eutrophication and the Macroscope. Hydrobiologia, 629, 5-19.
https://doi.org/10.1007/s10750-009-9759-z
[80]  Tett, P., Gowen, R., Painting, S., Elliott, M., Forster, R., Mills, D., et al. (2013) Framework for Understanding Marine Ecosystem Health. Marine Ecology Progress Series, 494, 1-27.
https://doi.org/10.3354/meps10539
[81]  Paerl, H.W., Valdes, L.M., Peierls, B.L., Adolf, J.E. and Harding, L.J.W. (2006) Anthropogenic and Climatic Influences on the Eutrophication of Large Estuarine Ecosystems. Limnology and Oceanography, 51, 448-462.
https://doi.org/10.4319/lo.2006.51.1_part_2.0448
[82]  Kennish, M.J. and Townsend, A.R. (2007) Nutrient Enrichment and Estuarine Eutrophication. Ecological Applications, 17, S1-S2.
https://doi.org/10.1890/06-1623.1
[83]  Kennish, M.J., Bricker, S.B., Dennison, W.C., Glibert, P.M., Livingston, R.J., Moore, K.A., et al. (2007) Barnegat Bay-Little Egg Harbor Estuary: Case Study of a Highly Eutrophic Coastal Bay System. Ecological Applications, 17, S3-S16.
https://doi.org/10.1890/05-0800.1
[84]  Burkholder, J.M., Tomasko, D.A. and Touchette, B.W. (2007) Seagrasses and Eutrophication. Journal of Experimental Marine Biology and Ecology, 350, 46-72.
https://doi.org/10.1016/j.jembe.2007.06.024
[85]  Kennish, M., Haag, S. and Sakowicz, G. (2010) Seagrass Decline in New Jersey Coastal Lagoons: A Response to Increasing Eutrophication. In: Kennish, M.J. and Paerl, H.W., Eds., Coastal Lagoons: Critical Habitats of Environmental Change, CRC Press, 167-201.
https://doi.org/10.1201/ebk1420088304-c8
[86]  Moore, K., Shields, E., Parrish, D. and Orth, R. (2012) Eelgrass Survival in Two Contrasting Systems: Role of Turbidity and Summer Water Temperatures. Marine Ecology Progress Series, 448, 247-258.
https://doi.org/10.3354/meps09578
[87]  Howarth, R.W., Chan, F., Swaney, D.P., Marino, R.M. and Hayn, M. (2021) Role of External Inputs of Nutrients to Aquatic Ecosystems in Determining Prevalence of Nitrogen Vs. Phosphorus Limitation of Net Primary Productivity. Biogeochemistry, 154, 293-306.
https://doi.org/10.1007/s10533-021-00765-z
[88]  Rocha, C., Ibánhez, J.S.P. and Jiang, S. (2024) Groundwater Quality Restoration and Ecosystem Productivity. In: Kennish, M. J. and Elliott, M., Eds., Anthropogenic Uses, Effects, and Solutions on Estuarine and Coastal Systems, Volume 6, Treatise on Estuarine and Coastal Science, 2nd Edition, Elsevier, 716-736.
[89]  Pinckney, J.L., Paerl, H.W., Tester, P. and Richardson, T.L. (2001) The Role of Nutrient Loading and Eutrophication in Estuarine Ecology. Environmental Health Perspectives, 109, 699-706.
https://doi.org/10.1289/ehp.01109s5699
[90]  Howarth, R.W., Swaney, D.P., Butler, T.J. and Marino, R. (2000) Rapid Communication: Climatic Control on Eutrophication of the Hudson River Estuary. Ecosystems, 3, 210-215.
https://doi.org/10.1007/s100210000020
[91]  Struyf, E., Van Damme, S. and Meire, P. (2004) Possible Effects of Climate Change on Estuarine Nutrient Fluxes: A Case Study in the Highly Nutrified Schelde Estuary (Belgium, the Netherlands). Estuarine, Coastal and Shelf Science, 60, 649-661.
https://doi.org/10.1016/j.ecss.2004.03.004
[92]  U.S. Environmental Protection Agency (2025) Overview of Total Maximum Daily Loads (TMDLs).
https://www.epa.gov/tmdl/overview-total-maximum-daily-loads-tmdls
[93]  Seitzinger, S.P., Mayorga, E., Bouwman, A.F., Kroeze, C., Beusen, A.H.W., Billen, G., et al. (2010) Global River Nutrient Export: A Scenario Analysis of Past and Future Trends. Global Biogeochemical Cycles, 24, GB003587.
https://doi.org/10.1029/2009gb003587
[94]  Seitzinger, S.P. and Phillips, L. (2017) Nitrogen Stewardship in the Anthropocene. Science, 357, 350-351.
https://doi.org/10.1126/science.aao0812
[95]  Paerl, H., Christian, R., Bales, J., Peierls, B., Hall, N., Joyner, A., et al. (2010) Assessing the Response of the Pamlico Sound, North Carolina, USA to Human and Climatic Disturbances: Management Implications. In: Kennish, M.J. and Paerl, H.W., Eds., Coastal Lagoons: Critical Habitats of Environmental Change, CRC Press, 17-42.
https://doi.org/10.1201/ebk1420088304-c2
[96]  Galloway, J.N., Cowling, E.B., Seitzinger, S.P. and Socolow, R.H. (2002) Reactive Nitrogen: Too Much of a Good Thing? AMBIO: A Journal of the Human Environment, 31, 60-63.
https://doi.org/10.1579/0044-7447-31.2.60
[97]  Howarth, R.W., Sharpley, A. and Walker, D. (2002) Sources of Nutrient Pollution to Coastal Waters in the United States: Implications for Achieving Coastal Water Quality Goals. Estuaries, 25, 656-676.
https://doi.org/10.1007/bf02804898
[98]  Howarth, R.W., Boyer, E.W., Pabich, W.J. and Galloway, J.N. (2002) Nitrogen Use in the United States from 1961–2000 and Potential Future Trends. AMBIO: A Journal of the Human Environment, 31, 88-96.
https://doi.org/10.1579/0044-7447-31.2.88
[99]  Paerl, H.W., Otten, T.G. and Kudela, R. (2018) Mitigating the Expansion of Harmful Algal Blooms across the Freshwater-To-Marine Continuum. Environmental Science & Technology, 52, 5519-5529.
https://doi.org/10.1021/acs.est.7b05950
[100]  Kennish, M.J. (2021) Drivers of Change in Estuarine and Coastal Marine Environments: An Overview. Open Journal of Ecology, 11, 224-239.
https://doi.org/10.4236/oje.2021.113017
[101]  Kennish, M.J. (2022) Management Strategies to Mitigate Anthropogenic Impacts in Estuarine and Coastal Marine Environments: A Review. Open Journal of Ecology, 12, 667-688.
https://doi.org/10.4236/oje.2022.1210038
[102]  Kennish, M. and Paerl, H. (2010) Coastal Lagoons: Critical Habitats of Environmental Change. In: Kennish, M.J. and Paerl, H.W., Eds., Coastal Lagoons: Critical Habitats of Environmental Change, 1-15.
https://doi.org/10.1201/ebk1420088304-c1
[103]  McGlathery, K., Sundbäck, K. and Anderson, I. (2007) Eutrophication in Shallow Coastal Bays and Lagoons: The Role of Plants in the Coastal Filter. Marine Ecology Progress Series, 348, 1-18.
https://doi.org/10.3354/meps07132
[104]  Kennish, M.J. (2009) Eutrophication of Mid-Atlantic Coastal Bays. Bulletin of the New Jersey Academy of Science, 54, 5-12.
[105]  Gedan, K., Altieri, A. and Bertness, M. (2011) Uncertain Future of New England Salt Marshes. Marine Ecology Progress Series, 434, 229-237.
https://doi.org/10.3354/meps09084
[106]  Deegan, L.A., Johnson, D.S., Warren, R.S., Peterson, B.J., Fleeger, J.W., Fagherazzi, S., et al. (2012) Coastal Eutrophication as a Driver of Salt Marsh Loss. Nature, 490, 388-392.
https://doi.org/10.1038/nature11533
[107]  Reef, R., Feller, I.C. and Lovelock, C.E. (2010) Nutrition of Mangroves. Tree Physiology, 30, 1148-1160.
https://doi.org/10.1093/treephys/tpq048
[108]  Orth, R.J., Carruthers, T.J.B., Dennison, W.C., Duarte, C.M., Fourqurean, J.W., Heck, K.L., et al. (2006) A Global Crisis for Seagrass Ecosystems. BioScience, 56, 987-996.
https://doi.org/10.1641/0006-3568(2006)56[987:agcfse]2.0.co;2
[109]  Waycott, M., Duarte, C.M., Carruthers, T.J.B., Orth, R.J., Dennison, W.C., Olyarnik, S., et al. (2009) Accelerating Loss of Seagrasses across the Globe Threatens Coastal Ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 106, 12377-12381.
https://doi.org/10.1073/pnas.0905620106
[110]  Duarte, C.M., Losada, I.J., Hendriks, I.E., Mazarrasa, I. and Marbà, N. (2013) The Role of Coastal Plant Communities for Climate Change Mitigation and Adaptation. Nature Climate Change, 3, 961-968.
[111]  Fennel, K. and Laurent, A. (2018) N and P as Ultimate and Proximate Limiting Nutrients in the Northern Gulf of Mexico: Implications for Hypoxia Reduction Strategies. Biogeosciences, 15, 3121-3131.
https://doi.org/10.5194/bg-15-3121-2018
[112]  Conley, D.J., Paerl, H.W., Howarth, R.W., Boesch, D.F., Seitzinger, S.P., Havens, K.E., et al. (2009) Controlling Eutrophication: Nitrogen and Phosphorus. Science, 323, 1014-1015.
https://doi.org/10.1126/science.1167755
[113]  Paerl, H.W., Scott, J.T., McCarthy, M.J., Newell, S.E., Gardner, W.S., Havens, K.E., et al. (2016) It Takes Two to Tango: When and Where Dual Nutrient (N & P) Reductions Are Needed to Protect Lakes and Downstream Ecosystems. Environmental Science & Technology, 50, 10805-10813.
https://doi.org/10.1021/acs.est.6b02575
[114]  Paerl, H.W., Gardner, W.S., Havens, K.E., Joyner, A.R., McCarthy, M.J., Newell, S.E., et al. (2016) Mitigating Cyanobacterial Harmful Algal Blooms in Aquatic Ecosystems Impacted by Climate Change and Anthropogenic Nutrients. Harmful Algae, 54, 213-222.
https://doi.org/10.1016/j.hal.2015.09.009
[115]  Lewis, W.M., Wurtsbaugh, W.A. and Paerl, H.W. (2011) Rationale for Control of Anthropogenic Nitrogen and Phosphorus to Reduce Eutrophication of Inland Waters. Environmental Science & Technology, 45, 10300-10305.
https://doi.org/10.1021/es202401p
[116]  Paerl, H.W., Plaas, H.E., Nelson, L.M., Korbobo, A.S., Cheshire, J.H., Yue, L., et al. (2024) Dual Nitrogen and Phosphorus Reductions Are Needed for Long-Term Mitigation of Eutrophication and Harmful Cyanobacterial Blooms in the Hydrologically-Variable San Francisco Bay Delta, Ca. Science of the Total Environment, 957, Article ID: 177499.
https://doi.org/10.1016/j.scitotenv.2024.177499
[117]  Villate, F., Iriarte, A., Uriarte, I., Intxausti, L. and de la Sota, A. (2013) Dissolved Oxygen in the Rehabilitation Phase of an Estuary: Influence of Sewage Pollution Abatement and Hydro-Climatic Factors. Marine Pollution Bulletin, 70, 234-246.
https://doi.org/10.1016/j.marpolbul.2013.03.010
[118]  Carstensen, J., Andersen, J.H., Gustafsson, B.G. and Conley, D.J. (2014) Deoxygenation of the Baltic Sea during the Last Century. Proceedings of the National Academy of Sciences of the United States of America, 111, 5628-5633.
https://doi.org/10.1073/pnas.1323156111
[119]  Fennel, K. and Testa, J.M. (2019) Biogeochemical Controls on Coastal Hypoxia. Annual Review of Marine Science, 11, 105-130.
https://doi.org/10.1146/annurev-marine-010318-095138
[120]  Painting, S., Foden, J., Forster, R., van der Molen, J., Aldridge, J., Best, M., et al. (2013) Impacts of Climate Change on Nutrient Enrichment. MCCIP Science Review, 2013, 219-235.
[121]  Katsanevakis, S., Stelzenmüller, V., South, A., Sørensen, T.K., Jones, P.J.S., Kerr, S., et al. (2011) Ecosystem-based Marine Spatial Management: Review of Concepts, Policies, Tools, and Critical Issues. Ocean & Coastal Management, 54, 807-820.
https://doi.org/10.1016/j.ocecoaman.2011.09.002
[122]  Kelly, C., Gray, L., Shucksmith, R.J. and Tweddle, J.F. (2014) Investigating Options on How to Address Cumulative Impacts in Marine Spatial Planning. Ocean & Coastal Management, 102, 139-148.
https://doi.org/10.1016/j.ocecoaman.2014.09.019
[123]  Foley, M.M., Halpern, B.S., Micheli, F., Armsby, M.H., Caldwell, M.R., Crain, C.M., et al. (2010) Guiding Ecological Principles for Marine Spatial Planning. Marine Policy, 34, 955-966.
https://doi.org/10.1016/j.marpol.2010.02.001
[124]  Papadopoulou, N., Smith, C.J., Franco, A., Elliott, M., Borja, A., Andersen, J.H., et al. (2025) ‘Horses for Courses’—An Interrogation of Tools for Marine Ecosystem-Based Management. Frontiers in Marine Science, 12, Article 1426971.
https://doi.org/10.3389/fmars.2025.1426971
[125]  Vitousek, P.M., Hättenschwiler, S., Olander, L. and Allison, S. (2002) Nitrogen and Nature. AMBIO: A Journal of the Human Environment, 31, 97-101.
https://doi.org/10.1579/0044-7447-31.2.97

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133