Estuaries and coastal marine waters are complex dynamic environments that are susceptible to the stresses and vagaries of climatic and non-climatic drivers of change. Climate change is an increasingly important factor in the development of eutrophication in estuarine and coastal marine environments. The additive, synergistic, and antagonistic interactions of climatic drivers of change and non-climatic anthropogenic and natural stressors create deleterious conditions that degrade these environments and their biotic communities. Climate-change mediated increases in precipitation, land runoff, river discharges, and temperature result in greater nutrient and organic matter loading, biogeochemical fluxes, enhanced thermal and salinity stratification, altered water circulation, harmful algal blooms, water column light attenuation, and deteriorated sediment and water quality in many estuarine and coastal marine ecosystems. The frequency, intensity, and extent of hypoxia are increasing in these ecosystems as well, where climate change amplifies the effects of eutrophication, leading to deoxygenation and extensive mortality of benthic organisms, a decline of fisheries, and damage to essential habitats. As temperature, nutrient enrichment, and organic matter supply continue to increase in many coastal regions worldwide, there are greater costs incurred for mitigation, adaptation, and resilience programs needed to deal with their adverse effects to improve the viability and sustainability of estuarine and coastal marine ecosystems, especially in urbanized areas. Coastal ecosystems are in a state of flux driven by climatic forcings that are causing a paradigm shift in their assessment and management. To this end, coastal managers are implementing ecosystem-based management programs using holistic, multidisciplinary integrated and unifying frameworks that link ecological, physical, and socio-economic elements to address the causes, consequences, and responses of anthropogenic impacts to maintain estuarine and coastal marine ecosystems in a healthy, productive, and resilient condition.
Statham, P.J. (2012) Nutrients in Estuaries—An Overview and the Potential Impacts of Climate Change. ScienceoftheTotalEnvironment, 434, 213-227. https://doi.org/10.1016/j.scitotenv.2011.09.088
[3]
Robins, P.E., Skov, M.W., Lewis, M.J., Giménez, L., Davies, A.G., Malham, S.K., etal. (2016) Impact of Climate Change on UK Estuaries: A Review of Past Trends and Potential Projections. Estuarine, CoastalandShelfScience, 169, 119-135. https://doi.org/10.1016/j.ecss.2015.12.016
[4]
Simeoni, C., Furlan, E., Pham, H.V., Critto, A., de Juan, S., Trégarot, E., etal. (2023) Evaluating the Combined Effect of Climate and Anthropogenic Stressors on Marine Coastal Ecosystems: Insights from a Systematic Review of Cumulative Impact Assessment Approaches. ScienceoftheTotalEnvironment, 861, Article ID: 160687. https://doi.org/10.1016/j.scitotenv.2022.160687
[5]
Day, J.W., Rybczyk, J.M., Mann, M.E., and Stephens, J.R. (2024) Climate Change: Effects, Causes, Consequences, Physical Hydromorphological, Ecophysiological, and Biogeochemical Changes in Coastal Wetlands and Waters. In: Kennish, M.J. and El-liott, M., Eds., Anthropogenic Uses, Effects, and Solutions on Estuarine and Coastal Systems, Vol. 6, Treatise on Estuarine and Coastal Science, 2nd Edition, Elsevier, 626-641.
Kennish, M.J. (2024) Nutrient Inputs and Organic Carbon Enrichment: Causes and Consequences of Eutrophication. TreatiseonEstuarineandCoastalScience (SecondEdition), 6, 218-258. https://doi.org/10.1016/b978-0-323-90798-9.00015-9
[8]
Kennish, M.J., Paerl, H.W., and Crosswell, J.R. (2024) Introduction to Climate Change and Estuaries. In: Kennish, M.J., Paerl, H.W., and Crosswell, J.R., Eds., ClimateChangeandEstuaries, CRC Press, 3-22. https://doi.org/10.1201/9781003126096
[9]
Kennish, M., Paerl, H., Crosswell, J. and Moore, K. (2024) Estuaries Face a Stormy Future. AmericanScientist, 112, 302-309. https://doi.org/10.1511/2024.112.5.302
[10]
Testa, J.M., Carstensen, J., Laurent, A. and Li, M. (2023) Hypoxia and Climate Change in Estuaries. In: Kennish, M.J., Paerl, H.W. and Crosswell, J.R., Eds., ClimateChangeandEstuaries, CRC Press, 143-170. https://doi.org/10.1201/9781003126096-9
[11]
Galparsoro, I., Montero, N., Mandiola, G., Menchaca, I., Borja, Á., Flannery, W., etal. (2025) Assessment Tool Addresses Implementation Challenges of Ecosystem-Based Management Principles in Marine Spatial Planning Processes. CommunicationsEarth&Environment, 6, Article No. 55. https://doi.org/10.1038/s43247-024-01975-7
[12]
Kennish, M.J. (2002) Environmental Threats and Environmental Future of Estuaries. EnvironmentalConservation, 29, 78-107. https://doi.org/10.1017/s0376892902000061
[13]
Kennish, M.J., Brush, M.J. and Moore, K.A. (2014) Drivers of Change in Shallow Coastal Photic Systems: An Introduction to a Special Issue. EstuariesandCoasts, 37, 3-19. https://doi.org/10.1007/s12237-014-9779-4
Lotze, H.K., Lenihan, H.S., Bourque, B.J., Bradbury, R.H., Cooke, R.G., Kay, M.C., etal. (2006) Depletion, Degradation, and Recovery Potential of Estuaries and Coastal Seas. Science, 312, 1806-1809. https://doi.org/10.1126/science.1128035
[16]
Day Jr., J.W., Kemp, W.M., Yáñez-Arancibia, A.Y. and Crump, B.C. (2012) Estuarine Ecology. 2nd Edition, Wiley-Blackwell.
[17]
Rabalais, N., Cai, W., Carstensen, J., Conley, D., Fry, B., Hu, X., etal. (2014) Eutrophication-driven Deoxygenation in the Coastal Ocean. Oceanography, 27, 172-183. https://doi.org/10.5670/oceanog.2014.21
[18]
Elliott, M. and Kennish, M.J. (2024) A Synthesis of Anthropogenic Impacts and Solutions in Estuarine and Coastal Environments. TreatiseonEstuarineandCoastalScience (SecondEdition), 6, 1-56. https://doi.org/10.1016/b978-0-323-90798-9.00126-8
Crain, C.M., Kroeker, K. and Halpern, B.S. (2008) Interactive and Cumulative Effects of Multiple Human Stressors in Marine Systems. EcologyLetters, 11, 1304-1315. https://doi.org/10.1111/j.1461-0248.2008.01253.x
[21]
Lonsdale, J., Nicholson, R., Judd, A., Elliott, M. and Clarke, C. (2020) A Novel Approach for Cumulative Impacts Assessment for Marine Spatial Planning. EnvironmentalScience&Policy, 106, 125-135. https://doi.org/10.1016/j.envsci.2020.01.011
[22]
Borja, A., Elliott, M., Teixeira, H., Stelzenmüller, V., Katsanevakis, S., Coll, M., etal. (2024) Addressing the Cumulative Impacts of Multiple Human Pressures in Marine Systems, for the Sustainable Use of the Seas. FrontiersinOceanSustainability, 1, Article 1308125. https://doi.org/10.3389/focsu.2023.1308125
[23]
Pittman, J. and Armitage, D. (2016) Governance across the Land-Sea Interface: A Systematic Review. EnvironmentalScience&Policy, 64, 9-17. https://doi.org/10.1016/j.envsci.2016.05.022
[24]
Elliott, M., Burdon, D., Atkins, J.P., Borja, A., Cormier, R., de Jonge, V.N., etal. (2017) “And DPSIR Begat DAPSI(W)R(M)!”—A Unifying Framework for Marine Environmental Management. MarinePollutionBulletin, 118, 27-40. https://doi.org/10.1016/j.marpolbul.2017.03.049
[25]
Elliott, M., Borja, Á. and Cormier, R. (2020) Managing Marine Resources Sustainably: A Proposed Integrated Systems Analysis Approach. Ocean&CoastalManagement, 197, Article ID: 105315. https://doi.org/10.1016/j.ocecoaman.2020.105315
[26]
Elliott, M., Borja, Á. and Cormier, R. (2023) Managing Marine Resources Sustainably—Ecological, Societal and Governance Connectivity, Coherence and Equivalence in Complex Marine Transboundary Regions. Ocean&CoastalManagement, 245, Article ID: 106875. https://doi.org/10.1016/j.ocecoaman.2023.106875
Intergovernmental Panel on Climate Change (IPCC) (2021) Climate Change 2021: The Physical Science Basis. In: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., et al., Eds., Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press. https://doi.org/10.1017/9781009157896
[29]
He, Q. and Silliman, B.R. (2019) Climate Change, Human Impacts, and Coastal Ecosystems in the Anthropocene. CurrentBiology, 29, R1021-R1035. https://doi.org/10.1016/j.cub.2019.08.042
[30]
Cloern, J. (2001) Our Evolving Conceptual Model of the Coastal Eutrophication Problem. MarineEcologyProgressSeries, 210, 223-253. https://doi.org/10.3354/meps210223
[31]
Cloern, J.E., Abreu, P.C., Carstensen, J., Chauvaud, L., Elmgren, R., Grall, J., etal. (2015) Human Activities and Climate Variability Drive Fast-Paced Change across the World’s Estuarine-Coastal Ecosystems. GlobalChangeBiology, 22, 513-529. https://doi.org/10.1111/gcb.13059
Paerl, H.W., Valdes-Weaver, L.M., Joyner, A.R. and Winkelmann, V. (2007) Phytoplankton Indicators of Ecological Change in the Eutrophying Pamlico Sound System, North Carolina. EcologicalApplications, 17, S88-S101. https://doi.org/10.1890/05-0840.1
[34]
Paerl, H.W. and Huisman, J. (2009) Climate Change: A Catalyst for Global Expansion of Harmful Cyanobacterial Blooms. EnvironmentalMicrobiologyReports, 1, 27-37. https://doi.org/10.1111/j.1758-2229.2008.00004.x
[35]
Paerl, H.W., Crosswell, J.R., Van Dam, B., Hall, N.S., Rossignol, K.L., Osburn, C.L., etal. (2018) Two Decades of Tropical Cyclone Impacts on North Carolina’s Estuarine Carbon, Nutrient and Phytoplankton Dynamics: Implications for Biogeochemical Cycling and Water Quality in a Stormier World. Biogeochemistry, 141, 307-332. https://doi.org/10.1007/s10533-018-0438-x
[36]
Piggott, J.J., Townsend, C.R. and Matthaei, C.D. (2015) Reconceptualizing Synergism and Antagonism among Multiple Stressors. EcologyandEvolution, 5, 1538-1547. https://doi.org/10.1002/ece3.1465
[37]
Cabral, H., Fonseca, V., Sousa, T. and Costa Leal, M. (2019) Synergistic Effects of Climate Change and Marine Pollution: An Overlooked Interaction in Coastal and Estuarine Areas. InternationalJournalofEnvironmentalResearchandPublicHealth, 16, Article 2737. https://doi.org/10.3390/ijerph16152737
[38]
Turner, R.E. and Rabalais, N.N. (1994) Coastal Eutrophication Near the Mississippi River Delta. Nature, 368, 619-621. https://doi.org/10.1038/368619a0
[39]
Breitburg, D.L., Hondorp, D.W., Davias, L.A. and Diaz, R.J. (2009) Hypoxia, Nitrogen, and Fisheries: Integrating Effects across Local and Global Landscapes. AnnualReviewofMarineScience, 1, 329-349. https://doi.org/10.1146/annurev.marine.010908.163754
[40]
Rabalais, N.N., Díaz, R.J., Levin, L.A., Turner, R.E., Gilbert, D. and Zhang, J. (2010) Dynamics and Distribution of Natural and Human-Caused Hypoxia. Biogeosciences, 7, 585-619. https://doi.org/10.5194/bg-7-585-2010
[41]
Diaz, R.J. (2015) Anoxia, Hypoxia, and Dead Zones. In: Kennish, M.J., Ed., EncyclopediaofEarthSciencesSeries, Springer, 19-29. https://doi.org/10.1007/978-94-017-8801-4_82
[42]
Diaz, R.J. and Rosenberg, R. (1995) Marine Benthic Hypoxia: A Review of Its Eco-logical Effects and the Behavioral Responses of Benthic Macrofauna. OceanographyandMarineBiologyAnnualReview, 33, 245-303.
[43]
Diaz, R.J. and Rosenberg, R. (2008) Spreading Dead Zones and Consequences for Marine Ecosystems. Science, 321, 926-929. https://doi.org/10.1126/science.1156401
[44]
Levin, L.A., Mendoza, G.F., Neira, C., Giddings, S.N. and Crooks, J.A. (2022) Consequences of Mouth Closure and Hypoxia-Induced State Changes in Low-Inflow Estuaries: Benthic Community and Trait-Based Response. EstuariesandCoasts, 46, 2128-2147. https://doi.org/10.1007/s12237-022-01132-3
[45]
Hoegh-Guldberg, O., Jacob, D., Taylor, M., Bindi, M., Brown, S., Camilloni, I., etal. (2018) Impacts of 1.5˚C Global Warming on Natural and Human Systems. In: Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., etal., Eds., Global Warming of 1.5°C: IPCC Special Report on Impacts of Global Warming of 1.5°C above Pre-Industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, Cambridge University Press, 175-312. https://doi.org/10.1017/9781009157940.005
Wernberg, T., Thomsen, M.S., Baum, J.K., Bishop, M.J., Bruno, J.F., Coleman, M.A., etal. (2024) Impacts of Climate Change on Marine Foundation Species. AnnualReviewofMarineScience, 16, 247-282. https://doi.org/10.1146/annurev-marine-042023-093037
[48]
Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., et al., Eds. (2022) Climate Change 2022: Impacts, Adaptation, and Vulnerability. Cambridge University Press, 3056. https://doi.org/10.1017/9781009325844
Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tigor, M. and Poloczanska, E. (2019) IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Cambridge University Press.
[51]
Gulev, S.K., Thorne, P.W., Ahn, J., Dentener, F.J., Domingues, C.M., Gerland, S., etal. (2021) Changing State of the Climate System. In: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., etal., Eds., Chapter 2, ClimateChange 2021: ThePhysicalScienceBasis.ContributionofWorkingGroupItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange, Cambridge University Press, 287-422. https://doi.org/10.1017/9781009157896.004
Lima, F.P. and Wethey, D.S. (2012) Three Decades of High-Resolution Coastal Sea Surface Temperatures Reveal More than Warming. NatureCommunications, 3, Article No. 704. https://doi.org/10.1038/ncomms1713
[54]
Poloczanska, E.S., Burrows, M.T., Brown, C.J., García Molinos, J., Halpern, B.S., Hoegh-Guldberg, O., etal. (2016) Responses of Marine Organisms to Climate Change across Oceans. FrontiersinMarineScience, 3, Article 62. https://doi.org/10.3389/fmars.2016.00062
[55]
Frid, C.L.J. and Caswell, B.A. (2017) Marine Pollution. Oxford University Press. https://doi.org/10.1093/oso/9780198726289.001.0001
[56]
Diaz, R.J. (2001) Overview of Hypoxia around the World. JournalofEnvironmentalQuality, 30, 275-281. https://doi.org/10.2134/jeq2001.302275x
[57]
Breitburg, D. (2002) Effects of Hypoxia, and the Balance between Hypoxia and Enrichment, on Coastal Fishes and Fisheries. Estuaries, 25, 767-781. https://doi.org/10.1007/bf02804904
[58]
Breitburg, D., Levin, L.A., Oschlies, A., Grégoire, M., Chavez, F.P., Conley, D.J., etal. (2018) Declining Oxygen in the Global Ocean and Coastal Waters. Science, 359, eaam7240. https://doi.org/10.1126/science.aam7240
[59]
Rabalais, N.N., Turner, R.E., Gupta, B.K.S., Platon, E. and Parsons, M.L. (2007) Sediments Tell the History of Eutrophication and Hypoxia in the Northern Gulf of Mexico. EcologicalApplications, 17, S129-S143. https://doi.org/10.1890/06-0644.1
[60]
U.S. Environmental Protection Agency (2024) Climate Change Indicators in the United States, 5th Edition. EPA 430-R-24-003. https://www.epa.gov/climate-indicators
[61]
Church, J.A., Woodworth, P.L., Aarup, T., and Wilson, W.S. (2010) Understanding Sea Level Rise and Variability. Wiley-Blackwell. https://doi.org/10.1002/9781444323276
[62]
Paerl, H.W., Hall, N.S., Hounshell, A.G., Rossignol, K.L., Barnard, M.A., Luettich, R.A., etal. (2020) Recent Increases of Rainfall and Flooding from Tropical Cyclones (TCS) in North Carolina (USA): Implications for Organic Matter and Nutrient Cycling in Coastal Watersheds. Biogeochemistry, 150, 197-216. https://doi.org/10.1007/s10533-020-00693-4
[63]
Medina, M., Beck, M.W., Hecker, J., Iadevaia, N., Moody, B., Anastasiou, C., etal. (2025) Water Quality Trends and Eutrophication Indicators in a Large Subtropical Estuary: A Case Study of the Greater Charlotte Harbor System in Southwest Florida. EstuariesandCoasts, 48, Article No. 56. https://doi.org/10.1007/s12237-025-01488-2
[64]
Deegan, L.A., Bowen, J.L., Drake, D., Fleeger, J.W., Friedrichs, C.T., Galván, K.A., etal. (2007) Susceptibility of Salt Marshes to Nutrient Enrichment and Predator Removal. EcologicalApplications, 17, S42-S63. https://doi.org/10.1890/06-0452.1
[65]
Weis, J.S. and Windham-Myers, L. (2024) Environmental Disturbances and Restoration of Salt Marshes. In: Kennish, M. J. and Elliott, M., Eds., Anthropogenic Uses, Effects, and Solutions on Estuarine and Coastal Systems, Volume 6, Treatise on Estuarine and Coastal Science, 2nd Edition, Elsevier, 549-595.
[66]
Justić, D., Rabalais, N.N. and Turner, R.E. (2005) Coupling between Climate Variability and Coastal Eutrophication: Evidence and Outlook for the Northern Gulf of Mexico. JournalofSeaResearch, 54, 25-35. https://doi.org/10.1016/j.seares.2005.02.008
[67]
Howarth, R., Swaney, D., Billen, G., Garnier, J., Hong, B., Humborg, C., etal. (2011) Nitrogen Fluxes from the Landscape Are Controlled by Net Anthropogenic Nitrogen Inputs and by Climate. FrontiersinEcologyandtheEnvironment, 10, 37-43. https://doi.org/10.1890/100178
[68]
Macías-Tapia, A., Mulholland, M.R., Selden, C.R., Clayton, S., Bernhardt, P.W. and Allen, T.R. (2024) Tidal Flooding Contributes to Eutrophication: Constraining Nonpoint Source Inputs to an Urban Estuary Using a Data-Driven Statistical Model. EstuariesandCoasts, 48, Article No. 36. https://doi.org/10.1007/s12237-024-01473-1
[69]
Altieri, A.H. and Gedan, K.B. (2014) Climate Change and Dead Zones. GlobalChangeBiology, 21, 1395-1406. https://doi.org/10.1111/gcb.12754
[70]
Sinha, E., Michalak, A.M. and Balaji, V. (2017) Eutrophication Will Increase during the 21st Century as a Result of Precipitation Changes. Science, 357, 405-408. https://doi.org/10.1126/science.aan2409
[71]
Patrício, J., Elliott, M., Mazik, K., Papadopoulou, K. and Smith, C.J. (2016) DPSIR—Two Decades of Trying to Develop a Unifying Framework for Marine Environmental Management? FrontiersinMarineScience, 3, Article 177. https://doi.org/10.3389/fmars.2016.00177
Cormier, R., Elliott, M. and Borja, Á. (2022) Managing Marine Resources Sustainably—The ‘Management Response-Footprint Pyramid’ Covering Policy, Plans and Technical Measures. FrontiersinMarineScience, 9, Article 869992. https://doi.org/10.3389/fmars.2022.869992
[74]
Rabalais, N.N., Turner, R.E., Díaz, R.J. and Justić, D. (2009) Global Change and Eutrophication of Coastal Waters. ICESJournalofMarineScience, 66, 1528-1537. https://doi.org/10.1093/icesjms/fsp047
[75]
Boesch, D.F. (2002) Challenges and Opportunities for Science in Reducing Nutrient Over-Enrichment of Coastal Ecosystems. Estuaries, 25, 886-900. https://doi.org/10.1007/bf02804914
[76]
Howarth, R.W. and Marino, R. (2006) Nitrogen as the Limiting Nutrient for Eutrophication in Coastal Marine Ecosystems: Evolving Views over Three Decades. LimnologyandOceanography, 51, 364-376. https://doi.org/10.4319/lo.2006.51.1_part_2.0364
[77]
Howarth, R., Chan, F., Conley, D.J., Garnier, J., Doney, S.C., Marino, R., etal. (2011) Coupled Biogeochemical Cycles: Eutrophication and Hypoxia in Temperate Estuaries and Coastal Marine Ecosystems. FrontiersinEcologyandtheEnvironment, 9, 18-26. https://doi.org/10.1890/100008
[78]
Nixon, S.W. (1995) Coastal Marine Eutrophication: A Definition, Social Causes, and Future Concerns. Ophelia, 41, 199-219. https://doi.org/10.1080/00785236.1995.10422044
[79]
Nixon, S.W. (2009) Eutrophication and the Macroscope. Hydrobiologia, 629, 5-19. https://doi.org/10.1007/s10750-009-9759-z
[80]
Tett, P., Gowen, R., Painting, S., Elliott, M., Forster, R., Mills, D., etal. (2013) Framework for Understanding Marine Ecosystem Health. MarineEcologyProgressSeries, 494, 1-27. https://doi.org/10.3354/meps10539
[81]
Paerl, H.W., Valdes, L.M., Peierls, B.L., Adolf, J.E. and Harding, L.J.W. (2006) Anthropogenic and Climatic Influences on the Eutrophication of Large Estuarine Ecosystems. LimnologyandOceanography, 51, 448-462. https://doi.org/10.4319/lo.2006.51.1_part_2.0448
[82]
Kennish, M.J. and Townsend, A.R. (2007) Nutrient Enrichment and Estuarine Eutrophication. EcologicalApplications, 17, S1-S2. https://doi.org/10.1890/06-1623.1
[83]
Kennish, M.J., Bricker, S.B., Dennison, W.C., Glibert, P.M., Livingston, R.J., Moore, K.A., etal. (2007) Barnegat Bay-Little Egg Harbor Estuary: Case Study of a Highly Eutrophic Coastal Bay System. EcologicalApplications, 17, S3-S16. https://doi.org/10.1890/05-0800.1
[84]
Burkholder, J.M., Tomasko, D.A. and Touchette, B.W. (2007) Seagrasses and Eutrophication. JournalofExperimentalMarineBiologyandEcology, 350, 46-72. https://doi.org/10.1016/j.jembe.2007.06.024
[85]
Kennish, M., Haag, S. and Sakowicz, G. (2010) Seagrass Decline in New Jersey Coastal Lagoons: A Response to Increasing Eutrophication. In: Kennish, M.J. and Paerl, H.W., Eds., Coastal Lagoons: Critical Habitats of Environmental Change, CRC Press, 167-201. https://doi.org/10.1201/ebk1420088304-c8
[86]
Moore, K., Shields, E., Parrish, D. and Orth, R. (2012) Eelgrass Survival in Two Contrasting Systems: Role of Turbidity and Summer Water Temperatures. MarineEcologyProgressSeries, 448, 247-258. https://doi.org/10.3354/meps09578
[87]
Howarth, R.W., Chan, F., Swaney, D.P., Marino, R.M. and Hayn, M. (2021) Role of External Inputs of Nutrients to Aquatic Ecosystems in Determining Prevalence of Nitrogen Vs. Phosphorus Limitation of Net Primary Productivity. Biogeochemistry, 154, 293-306. https://doi.org/10.1007/s10533-021-00765-z
[88]
Rocha, C., Ibánhez, J.S.P. and Jiang, S. (2024) Groundwater Quality Restoration and Ecosystem Productivity. In: Kennish, M. J. and Elliott, M., Eds., Anthropogenic Uses, Effects, and Solutions on Estuarine and Coastal Systems, Volume 6, Treatise on Estuarine and Coastal Science, 2nd Edition, Elsevier, 716-736.
[89]
Pinckney, J.L., Paerl, H.W., Tester, P. and Richardson, T.L. (2001) The Role of Nutrient Loading and Eutrophication in Estuarine Ecology. EnvironmentalHealthPerspectives, 109, 699-706. https://doi.org/10.1289/ehp.01109s5699
[90]
Howarth, R.W., Swaney, D.P., Butler, T.J. and Marino, R. (2000) Rapid Communication: Climatic Control on Eutrophication of the Hudson River Estuary. Ecosystems, 3, 210-215. https://doi.org/10.1007/s100210000020
[91]
Struyf, E., Van Damme, S. and Meire, P. (2004) Possible Effects of Climate Change on Estuarine Nutrient Fluxes: A Case Study in the Highly Nutrified Schelde Estuary (Belgium, the Netherlands). Estuarine, CoastalandShelfScience, 60, 649-661. https://doi.org/10.1016/j.ecss.2004.03.004
[92]
U.S. Environmental Protection Agency (2025) Overview of Total Maximum Daily Loads (TMDLs). https://www.epa.gov/tmdl/overview-total-maximum-daily-loads-tmdls
[93]
Seitzinger, S.P., Mayorga, E., Bouwman, A.F., Kroeze, C., Beusen, A.H.W., Billen, G., etal. (2010) Global River Nutrient Export: A Scenario Analysis of Past and Future Trends. GlobalBiogeochemicalCycles, 24, GB003587. https://doi.org/10.1029/2009gb003587
[94]
Seitzinger, S.P. and Phillips, L. (2017) Nitrogen Stewardship in the Anthropocene. Science, 357, 350-351. https://doi.org/10.1126/science.aao0812
[95]
Paerl, H., Christian, R., Bales, J., Peierls, B., Hall, N., Joyner, A., etal. (2010) Assessing the Response of the Pamlico Sound, North Carolina, USA to Human and Climatic Disturbances: Management Implications. In: Kennish, M.J. and Paerl, H.W., Eds., Coastal Lagoons: Critical Habitats of Environmental Change, CRC Press, 17-42. https://doi.org/10.1201/ebk1420088304-c2
[96]
Galloway, J.N., Cowling, E.B., Seitzinger, S.P. and Socolow, R.H. (2002) Reactive Nitrogen: Too Much of a Good Thing? AMBIO: AJournaloftheHumanEnvironment, 31, 60-63. https://doi.org/10.1579/0044-7447-31.2.60
[97]
Howarth, R.W., Sharpley, A. and Walker, D. (2002) Sources of Nutrient Pollution to Coastal Waters in the United States: Implications for Achieving Coastal Water Quality Goals. Estuaries, 25, 656-676. https://doi.org/10.1007/bf02804898
[98]
Howarth, R.W., Boyer, E.W., Pabich, W.J. and Galloway, J.N. (2002) Nitrogen Use in the United States from 1961–2000 and Potential Future Trends. AMBIO: A Journal of the Human Environment, 31, 88-96. https://doi.org/10.1579/0044-7447-31.2.88
[99]
Paerl, H.W., Otten, T.G. and Kudela, R. (2018) Mitigating the Expansion of Harmful Algal Blooms across the Freshwater-To-Marine Continuum. Environmental Science & Technology, 52, 5519-5529. https://doi.org/10.1021/acs.est.7b05950
[100]
Kennish, M.J. (2021) Drivers of Change in Estuarine and Coastal Marine Environments: An Overview. OpenJournalofEcology, 11, 224-239. https://doi.org/10.4236/oje.2021.113017
[101]
Kennish, M.J. (2022) Management Strategies to Mitigate Anthropogenic Impacts in Estuarine and Coastal Marine Environments: A Review. OpenJournalofEcology, 12, 667-688. https://doi.org/10.4236/oje.2022.1210038
[102]
Kennish, M. and Paerl, H. (2010) Coastal Lagoons: Critical Habitats of Environmental Change. In: Kennish, M.J. and Paerl, H.W., Eds., Coastal Lagoons: Critical Habitats of Environmental Change, 1-15. https://doi.org/10.1201/ebk1420088304-c1
[103]
McGlathery, K., Sundbäck, K. and Anderson, I. (2007) Eutrophication in Shallow Coastal Bays and Lagoons: The Role of Plants in the Coastal Filter. MarineEcologyProgressSeries, 348, 1-18. https://doi.org/10.3354/meps07132
Gedan, K., Altieri, A. and Bertness, M. (2011) Uncertain Future of New England Salt Marshes. MarineEcologyProgressSeries, 434, 229-237. https://doi.org/10.3354/meps09084
[106]
Deegan, L.A., Johnson, D.S., Warren, R.S., Peterson, B.J., Fleeger, J.W., Fagherazzi, S., etal. (2012) Coastal Eutrophication as a Driver of Salt Marsh Loss. Nature, 490, 388-392. https://doi.org/10.1038/nature11533
[107]
Reef, R., Feller, I.C. and Lovelock, C.E. (2010) Nutrition of Mangroves. TreePhysiology, 30, 1148-1160. https://doi.org/10.1093/treephys/tpq048
[108]
Orth, R.J., Carruthers, T.J.B., Dennison, W.C., Duarte, C.M., Fourqurean, J.W., Heck, K.L., etal. (2006) A Global Crisis for Seagrass Ecosystems. BioScience, 56, 987-996. https://doi.org/10.1641/0006-3568(2006)56[987:agcfse]2.0.co;2
[109]
Waycott, M., Duarte, C.M., Carruthers, T.J.B., Orth, R.J., Dennison, W.C., Olyarnik, S., etal. (2009) Accelerating Loss of Seagrasses across the Globe Threatens Coastal Ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 106, 12377-12381. https://doi.org/10.1073/pnas.0905620106
[110]
Duarte, C.M., Losada, I.J., Hendriks, I.E., Mazarrasa, I. and Marbà, N. (2013) The Role of Coastal Plant Communities for Climate Change Mitigation and Adaptation. Nature Climate Change, 3, 961-968.
[111]
Fennel, K. and Laurent, A. (2018) N and P as Ultimate and Proximate Limiting Nutrients in the Northern Gulf of Mexico: Implications for Hypoxia Reduction Strategies. Biogeosciences, 15, 3121-3131. https://doi.org/10.5194/bg-15-3121-2018
Paerl, H.W., Scott, J.T., McCarthy, M.J., Newell, S.E., Gardner, W.S., Havens, K.E., etal. (2016) It Takes Two to Tango: When and Where Dual Nutrient (N & P) Reductions Are Needed to Protect Lakes and Downstream Ecosystems. EnvironmentalScience&Technology, 50, 10805-10813. https://doi.org/10.1021/acs.est.6b02575
Lewis, W.M., Wurtsbaugh, W.A. and Paerl, H.W. (2011) Rationale for Control of Anthropogenic Nitrogen and Phosphorus to Reduce Eutrophication of Inland Waters. Environmental Science & Technology, 45, 10300-10305. https://doi.org/10.1021/es202401p
[116]
Paerl, H.W., Plaas, H.E., Nelson, L.M., Korbobo, A.S., Cheshire, J.H., Yue, L., etal. (2024) Dual Nitrogen and Phosphorus Reductions Are Needed for Long-Term Mitigation of Eutrophication and Harmful Cyanobacterial Blooms in the Hydrologically-Variable San Francisco Bay Delta, Ca. ScienceoftheTotalEnvironment, 957, Article ID: 177499. https://doi.org/10.1016/j.scitotenv.2024.177499
[117]
Villate, F., Iriarte, A., Uriarte, I., Intxausti, L. and de la Sota, A. (2013) Dissolved Oxygen in the Rehabilitation Phase of an Estuary: Influence of Sewage Pollution Abatement and Hydro-Climatic Factors. MarinePollutionBulletin, 70, 234-246. https://doi.org/10.1016/j.marpolbul.2013.03.010
[118]
Carstensen, J., Andersen, J.H., Gustafsson, B.G. and Conley, D.J. (2014) Deoxygenation of the Baltic Sea during the Last Century. Proceedings of the National Academy of Sciences of the United States of America, 111, 5628-5633. https://doi.org/10.1073/pnas.1323156111
[119]
Fennel, K. and Testa, J.M. (2019) Biogeochemical Controls on Coastal Hypoxia. AnnualReviewofMarineScience, 11, 105-130. https://doi.org/10.1146/annurev-marine-010318-095138
[120]
Painting, S., Foden, J., Forster, R., van der Molen, J., Aldridge, J., Best, M., etal. (2013) Impacts of Climate Change on Nutrient Enrichment. MCCIPScienceReview, 2013, 219-235.
[121]
Katsanevakis, S., Stelzenmüller, V., South, A., Sørensen, T.K., Jones, P.J.S., Kerr, S., etal. (2011) Ecosystem-based Marine Spatial Management: Review of Concepts, Policies, Tools, and Critical Issues. Ocean&CoastalManagement, 54, 807-820. https://doi.org/10.1016/j.ocecoaman.2011.09.002
[122]
Kelly, C., Gray, L., Shucksmith, R.J. and Tweddle, J.F. (2014) Investigating Options on How to Address Cumulative Impacts in Marine Spatial Planning. Ocean&CoastalManagement, 102, 139-148. https://doi.org/10.1016/j.ocecoaman.2014.09.019
Papadopoulou, N., Smith, C.J., Franco, A., Elliott, M., Borja, A., Andersen, J.H., etal. (2025) ‘Horses for Courses’—An Interrogation of Tools for Marine Ecosystem-Based Management. FrontiersinMarineScience, 12, Article 1426971. https://doi.org/10.3389/fmars.2025.1426971
[125]
Vitousek, P.M., Hättenschwiler, S., Olander, L. and Allison, S. (2002) Nitrogen and Nature. AMBIO: AJournaloftheHumanEnvironment, 31, 97-101. https://doi.org/10.1579/0044-7447-31.2.97