|
Applied Physics 2025
基于矢量射线追踪法的气泡光散射特性研究
|
Abstract:
针对大尺寸非球形颗粒光散射计算的问题,本研究提出一种基于矢量射线追踪模型。通过构建三维气泡几何模型,建立了高斯光束入射下的矢量光场传播模型,实现了气泡表面及内部反射或折射光路的追踪。采用一维分段三次Hermite插值算法实现了全角度散射场的相干叠加计算。数值模拟表明,当高斯光束束腰半径大于气泡直径时,高斯光束退化为准直光束,其波前曲率可忽略,此时矢量射线追踪模型相位计算结果与几何光学理论的相位结果吻合,有效验证了模型的适用性。随着气泡尺寸的增大,散射光强明显增大,散射光强分布曲线呈震荡分布,本模型可适用于气泡的光场分析。
To address the challenge of calculating light scattering for large-scale non-spherical particles, this study proposes a vector ray tracing model. By constructing a three-dimensional geometric model of bubbles, we establish a vector light field propagation model under Gaussian beam illumination, enabling the tracking of reflection and refraction paths on the bubble surface and within its interior. A one-dimensional piecewise cubic Hermite interpolation algorithm is employed to achieve coherent superposition calculations of the full-angle scattering field. Numerical simulations demonstrate that when the waist radius of the Gaussian beam exceeds the bubble diameter, the beam degenerates into a collimated beam with negligible wavefront curvature. In this scenario, the phase results from the vector ray tracing model align with those derived from geometric optics theory, validating the model’s applicability. As the bubble size increases, the scattering intensity significantly enhances, and the distribution curve of scattering intensity exhibits oscillatory behavior. This model proves suitable for analyzing the optical field characteristics of bubbles.
[1] | 刘慧开, 杨立, 沈良文, 等. 舰船尾流的激光散射特性[J]. 激光与红外, 2003(4): 265-267. |
[2] | Gogoi, A., Choudhury, A. and Ahmed, G.A. (2010) Mie Scattering Computation of Spherical Particles with Very Large Size Parameters Using an Improved Program with Variable Speed and Accuracy. Journal of Modern Optics, 57, 2192-2202. https://doi.org/10.1080/09500340.2010.533206 |
[3] | Simpson, S.H. and Hanna, S. (2011) Application of the Discrete Dipole Approximation to Optical Trapping Calculations of Inhomogeneous and Anisotropic Particles. Optics Express, 19, 16526-16541. https://doi.org/10.1364/oe.19.016526 |
[4] | Hoblos, A., Suarez, M., Guichardaz, B., Courjal, N., Bernal, M. and Issam Baida, F. (2020) Revealing Photonic Symmetry-Protected Modes by the Finite-Difference-Time-Domain Method. Optics Letters, 45, 2103-2106. https://doi.org/10.1364/ol.386845 |
[5] | Mishchenko, M.I., Travis, L.D. and Mackowski, D.W. (1996) T-matrix Computations of Light Scattering by Nonspherical Particles: A Review. Journal of Quantitative Spectroscopy and Radiative Transfer, 55, 535-575. https://doi.org/10.1016/0022-4073(96)00002-7 |
[6] | Ungut, A., Grehan, G. and Gouesbet, G. (1981) Comparisons between Geometrical Optics and Lorenz-Mie Theory. Applied Optics, 20, 2911-2918. https://doi.org/10.1364/ao.20.002911 |
[7] | He, H., Li, W., Zhang, X., Xia, M. and Yang, K. (2012) Light Scattering by a Spheroidal Bubble with Geometrical Optics Approximation. Journal of Quantitative Spectroscopy and Radiative Transfer, 113, 1467-1475. https://doi.org/10.1016/j.jqsrt.2012.03.011 |
[8] | Yu, H., Shen, J. and Tropea, C. (2015) Application of Vector Ray Tracing to the Computation of Möbius Shifts for the Primary and Secondary Rainbows. Applied Optics, 54, 9093-9101. https://doi.org/10.1364/ao.54.009093 |
[9] | Van de Hulst, H.C. and Twersky, V. (1957) light Scattering by Small Particles. Physics Today, 10, 28-30. https://doi.org/10.1063/1.3060205 |
[10] | Chevaillier, J., Fabre, J. and Hamelin, P. (1986) Forward Scattered Light Intensities by a Sphere Located Anywhere in a Gaussian Beam. Applied Optics, 25, 1222-1225. https://doi.org/10.1364/ao.25.001222 |