全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Quantum Origin of the Event Horizon

DOI: 10.4236/jhepgc.2025.112018, PP. 224-229

Keywords: Event Horizon, Minkowski-Schwarzschild Spacetimes, Thin Shell Collapse

Full-Text   Cite this paper   Add to My Lib

Abstract:

An analysis of the Penrose-Carter diagram of the gravitational collapse of a thin shell of radiation in Minkowski spacetime supports the idea of a quantum origin of the event horizon, and therefore of the concomitant collapse process. The analysis is based on the unavoidable presence of a length scale in the conformal compactification of both Minkowski and Schwarzschild spacetimes, which in a natural way can be identified with the Planck length. One should arrive at the same conclusion, however, with a more involved mathematical description, for any other collapse process with a not naked singularity i.e. protected by an event horizon.

References

[1]  Penrose, R. (1962) The Light Cone at Infinity. International Conference on Relativistic Theories of Gravitation, Warsaw and Jablonna, 25-31 July 1962, 369-373.
[2]  Carter, B. (1966) Complete Analytic Extension of the Symmetry Axis of Kerr’s Solution of Einstein’s Equations. Physical Review, 141, 1242-1247.
https://doi.org/10.1103/physrev.141.1242
[3]  Susskind, L. and Lindesay, J. (2004). An Introduction to Black Holes, Information and the String Theory Revolution. World Scientific Publication.
https://doi.org/10.1142/5689
[4]  Zee, A. (2013) Einstein Gravity in a Nutshell. Princeton University Press.
[5]  Blau, M. (2022) Lecture Notes on General Relativity. Bern University.
[6]  Senovilla, J.M.M., Macias, A. and Maceda, M. (2010) Black Holes and Trapped Surfaces. AIP Conference Proceedings, Mexico, 19-23 July 2010, 123-135.
https://doi.org/10.1063/1.3531621
[7]  Wilczek, F. (2005) On Absolute Units, I: Choices. Physics Today, 58, 12-13.
https://doi.org/10.1063/1.2138392
[8]  Socolovsky, M. (2023) Conformally Compactified Minkowski Spacetime and Planck Constant. Journal of High Energy Physics, Gravitation and Cosmology, 9, 1062-1066.
https://doi.org/10.4236/jhepgc.2023.94077
[9]  Gourgoulhon, E. (2023) Geometry and Physics of Black Holes. Laboratoire Univers et Théories, Paris, France.
[10]  Ashtekar, A. (2025) Black Hole Horizons and Their Mechanics. In: Encyclopedia of Mathematical Physics, Elsevier, 343-351.
https://doi.org/10.1016/b978-0-323-95703-8.00020-3
[11]  Dai, D., Minic, D. and Stojkovic, D. (2022) On Black Holes as Macroscopic Quantum Objects. Frontiers in Physics, 10, Article 891977.
https://doi.org/10.3389/fphy.2022.891977
[12]  Vaz, C. (2014) Black Holes as Gravitational Atoms. International Journal of Modern Physics D, 23, Article 1441002.
https://doi.org/10.1142/s0218271814410028
[13]  Corda, C. (2023) Schrödinger and Klein-Gordon Theories of Black Holes from the Quantization of the Oppenheimer and Snyder Gravitational Collapse. Communications in Theoretical Physics, 75, Article 095405.
https://doi.org/10.1088/1572-9494/ace4b2
[14]  Poisson, E. (2004) A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics. Cambridge University Press.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133