Iron nanoparticles (FeNPs) are promising candidates for medical purposes, including topical dermatological applications and skin absorption. This research investigated whether biologically synthesized FeNPs display potential toxic effects in human keratinocytes in vitro. Cell cultures were performed with the HaCaT keratinocyte cell line, which was exposed to FeNPs (0 - 214 μg/mL) for 4 and 24 h. Cell viability, reactive oxygen species production, cellular antioxidant components, and wound healing assays were analyzed. FeNPs did not alter the morphology of HaCaT cells, although low cellular cytotoxicity at the highest concentration was observed. The 214 μg/mL condition also altered cell migration as well as increased reactive oxygen species production. The obtained results have shown that biosynthetic FeNPs display low keratinocyte toxicity and could be explored as promising candidates to be used in local treatments as conjugates for drug delivery systems.
References
[1]
Choi, Y. and Lee, S.Y. (2020) Biosynthesis of Inorganic Nanomaterials Using Microbial Cells and Bacteriophages. NatureReviewsChemistry, 4, 638-656. https://doi.org/10.1038/s41570-020-00221-w
[2]
Andleeb, A., Andleeb, A., Asghar, S., Zaman, G., Tariq, M., Mehmood, A., et al. (2021) A Systematic Review of Biosynthesized Metallic Nanoparticles as a Promising Anti-Cancer-Strategy. Cancers, 13, Article 2818. https://doi.org/10.3390/cancers13112818
[3]
Malhotra, N., Lee, J., Liman, R.A.D., Ruallo, J.M.S., Villaflores, O.B., Ger, T., et al. (2020) Potential Toxicity of Iron Oxide Magnetic Nanoparticles: A Review. Molecules, 25, Article 3159. https://doi.org/10.3390/molecules25143159
[4]
Cotin, G., Piant, S., Mertz, D., Felder-Flesch, D. and Begin-Colin, S. (2018) Iron Oxide Nanoparticles for Biomedical Applications: Synthesis, Functionalization, and Application. In: Mahmoudi, M. and Laurent, S., Eds., IronOxideNanoparticlesforBiomedicalApplications, Elsevier, 43-88. https://doi.org/10.1016/b978-0-08-101925-2.00002-4
[5]
Ribeiro, A.I., Dias, A.M. and Zille, A. (2022) Synergistic Effects between Metal Nanoparticles and Commercial Antimicrobial Agents: A Review. ACSAppliedNanoMaterials, 5, 3030-3064. https://doi.org/10.1021/acsanm.1c03891
[6]
Park, T.J., Lee, K.G. and Lee, S.Y. (2015) Advances in Microbial Biosynthesis of Metal Nanoparticles. AppliedMicrobiologyandBiotechnology, 100, 521-534. https://doi.org/10.1007/s00253-015-6904-7
[7]
Zafar, N., Madni, A., Khalid, A., Khan, T., Kousar, R., Naz, S.S., et al. (2020) Pharmaceutical and Biomedical Applications of Green Synthesized Metal and Metal Oxide Nanoparticles. CurrentPharmaceuticalDesign, 26, 5844-5865. https://doi.org/10.2174/1381612826666201126144805
[8]
Franceschinis, G., Beverina, M., Corleto, M., Sosa, A.M., Lillo, C., Arias Casará, L., et al. (2023) Green-Synthesized Silver Nanoparticles Using Aloe Maculata Extract as Antibacterial Agent for Potential Topical Application. OpenNano, 12, Article ID: 100148. https://doi.org/10.1016/j.onano.2023.100148
[9]
Tsekhmistrenko, S.I., Bityutskyy, V.S., Tsekhmistrenko, O.S., Horalskyi, L.P., Tymoshok, N.O. and Spivak, M.Y. (2020) Bacterial Synthesis of Nanoparticles: A Green Approach. BiosystemsDiversity, 28, 9-17. https://doi.org/10.15421/012002
[10]
Crespo, K.A., Baronetti, J.L., Quinteros, M.A., Páez, P.L. and Paraje, M.G. (2016) Intra-and Extracellular Biosynthesis and Characterization of Iron Nanoparticles from Prokaryotic Microorganisms with Anticoagulant Activity. PharmaceuticalResearch, 34, 591-598. https://doi.org/10.1007/s11095-016-2084-0
[11]
Sundaram, P.A., Augustine, R. and Kannan, M. (2012) Extracellular Biosynthesis of Iron Oxide Nanoparticles by Bacillus subtilis Strains Isolated from Rhizosphere Soil. BiotechnologyandBioprocessEngineering, 17, 835-840. https://doi.org/10.1007/s12257-011-0582-9
[12]
Fatemi, M., Mollania, N., Momeni-Moghaddam, M. and Sadeghifar, F. (2018) Extracellular Biosynthesis of Magnetic Iron Oxide Nanoparticles by Bacillus Cereus Strain HMH1: Characterization and in Vitro Cytotoxicity Analysis on MCF-7 and 3T3 Cell Lines. JournalofBiotechnology, 270, 1-11. https://doi.org/10.1016/j.jbiotec.2018.01.021
[13]
Sani, A., Cao, C. and Cui, D. (2021) Toxicity of Gold Nanoparticles (AuNPs): A Review. BiochemistryandBiophysicsReports, 26, Article ID: 100991. https://doi.org/10.1016/j.bbrep.2021.100991
[14]
Abbasi, R., Shineh, G., Mobaraki, M., Doughty, S. and Tayebi, L. (2023) Structural Parameters of Nanoparticles Affecting Their Toxicity for Biomedical Applications: A Review. JournalofNanoparticleResearch, 25, Article No. 43. https://doi.org/10.1007/s11051-023-05690-w
[15]
Thomas, A., Sankaranarayanan, S.A. and Rengan, A.K. (2022) Modified Polyethylene Glycol Encapsulated Iron Oxide Nanoparticles for Accelerated Wound Healing Application. IEEETransactionsonNanotechnology, 21, 1-5. https://doi.org/10.1109/tnano.2021.3138260
[16]
Rao, Y., Chen, W., Liang, X., Huang, Y., Miao, J., Liu, L., et al. (2014) Epirubicin-loaded Superparamagnetic Iron-Oxide Nanoparticles for Transdermal Delivery: Cancer Therapy by Circumventing the Skin Barrier. Small, 11, 239-247. https://doi.org/10.1002/smll.201400775
[17]
Murray, A.R., Kisin, E., Inman, A., Young, S., Muhammed, M., Burks, T., et al. (2012) Oxidative Stress and Dermal Toxicity of Iron Oxide Nanoparticles in Vitro. CellBiochemistryandBiophysics, 67, 461-476. https://doi.org/10.1007/s12013-012-9367-9
[18]
Alili, L., Chapiro, S., Marten, G.U., Schmidt, A.M., Zanger, K. and Brenneisen, P. (2015) Effect of Fe3o4nanoparticles on Skin Tumor Cells and Dermal Fibroblasts. BioMedResearchInternational, 2015, Article ID: 530957. https://doi.org/10.1155/2015/530957
[19]
Dowlath, M.J.H., Musthafa, S.A., Mohamed Khalith, S.B., Varjani, S., Karuppannan, S.K., Ramanujam, G.M., et al. (2021) Comparison of Characteristics and Biocompatibility of Green Synthesized Iron Oxide Nanoparticles with Chemical Synthesized Nanoparticles. EnvironmentalResearch, 201, Article ID: 111585. https://doi.org/10.1016/j.envres.2021.111585
[20]
Iqbal, J., Abbasi, B.A., Batool, R., Khalil, A.T., Hameed, S., Kanwal, S., et al. (2019) Biogenic Synthesis of Green and Cost Effective Cobalt Oxide Nanoparticles Using Geraniumwallichianum Leaves Extract and Evaluation of in Vitro Antioxidant, Antimicrobial, Cytotoxic and Enzyme Inhibition Properties. MaterialsResearchExpress, 6, Article ID: 115407. https://doi.org/10.1088/2053-1591/ab4f04
[21]
Moacă, E., Watz, C.G., Flondor (Ionescu), D., Păcurariu, C., Tudoran, L.B., Ianoș, R., et al. (2022) Biosynthesis of Iron Oxide Nanoparticles: Physico-Chemical Characterization and Their in Vitro Cytotoxicity on Healthy and Tumorigenic Cell Lines. Nanomaterials, 12, Article 2012. https://doi.org/10.3390/nano12122012
[22]
Magogotya, M., Vetten, M., Roux-van der Merwe, M., Badenhorst, J. and Gulumian, M. (2022) In Vitro Toxicity and Internalization of Gold Nanoparticles (AuNPs) in Human Epithelial Colorectal Adenocarcinoma (Caco-2) Cells and the Human Skin Keratinocyte (HaCaT) Cells. MutationResearch/GeneticToxicologyandEnvironmentalMutagenesis, 883, 503556. https://doi.org/10.1016/j.mrgentox.2022.503556
[23]
Zanette, C., Pelin, M., Crosera, M., Adami, G., Bovenzi, M., Larese, F.F., et al. (2011) Silver Nanoparticles Exert a Long-Lasting Antiproliferative Effect on Human Keratinocyte HaCaT Cell Line. Toxicologyin Vitro, 25, 1053-1060. https://doi.org/10.1016/j.tiv.2011.04.005
[24]
Perveen, S., Nadeem, R., Rehman, S.u., Afzal, N., Anjum, S., Noreen, S., et al. (2022) Green Synthesis of Iron (Fe) Nanoparticles Using Plumeria obtusa Extract as a Reducing and Stabilizing Agent: Antimicrobial, Antioxidant and Biocompatibility Studies. ArabianJournalofChemistry, 15, Article ID: 103764. https://doi.org/10.1016/j.arabjc.2022.103764
[25]
Zangeneh, A., Zangeneh, M.M. and Moradi, R. (2019) Ethnomedicinal Plant-Extract‐assisted Green Synthesis of Iron Nanoparticles Using Alliumsaralicum Extract, and Their Antioxidant, Cytotoxicity, Antibacterial, Antifungal and Cutaneous Wound‐healing Activities. AppliedOrganometallicChemistry, 34, e5247. https://doi.org/10.1002/aoc.5247
[26]
Bustos, P.S., Quinteros, M.d.l.Á., Gomez, D.S., Ortega, M.G., Páez, P.L. and Guiñazú, N.L. (2021) Silver Bionanoparticles Toxicity in Trophoblast Is Mediated by Nitric Oxide and Glutathione Pathways. Toxicology, 454, Article ID: 152741. https://doi.org/10.1016/j.tox.2021.152741
[27]
Zhang, J., Wang, W. and Mao, X. (2020) Chitopentaose Protects HaCaT Cells against H2O2-Induced Oxidative Damage through Modulating MAPKs and Nrf2/ARE Signaling Pathways. JournalofFunctionalFoods, 72, Article ID: 104086. https://doi.org/10.1016/j.jff.2020.104086
[28]
Calienni, M.N., Temprana, C.F., Prieto, M.J., Paolino, D., Fresta, M., Tekinay, A.B., et al. (2017) Nano-Formulation for Topical Treatment of Precancerous Lesions: Skin Penetration, in Vitro, and in Vivo Toxicological Evaluation. Drug Delivery and TranslationalResearch, 8, 496-514. https://doi.org/10.1007/s13346-017-0469-1
[29]
Grada, A., Otero-Vinas, M., Prieto-Castrillo, F., Obagi, Z. and Falanga, V. (2017) Research Techniques Made Simple: Analysis of Collective Cell Migration Using the Wound Healing Assay. JournalofInvestigativeDermatology, 137, e11-e16. https://doi.org/10.1016/j.jid.2016.11.020
[30]
Kumar, P., Nagarajan, A. and Uchil, P.D. (2018) Analysis of Cell Viability by the MTT Assay. ColdSpringHarborProtocols, No. 6, 469-471. https://doi.org/10.1101/pdb.prot095505
[31]
Feoktistova, M., Geserick, P. and Leverkus, M. (2016) Crystal Violet Assay for Determining Viability of Cultured Cells. Cold Spring Harbor Protocols, No. 4, 343-346. https://doi.org/10.1101/pdb.prot087379
[32]
Repetto, G., del Peso, A. and Zurita, J.L. (2008) Neutral Red Uptake Assay for the Estimation of Cell Viability/cytotoxicity. NatureProtocols, 3, 1125-1131. https://doi.org/10.1038/nprot.2008.75
[33]
Narayanan, K.B. and Sakthivel, N. (2010) Biological Synthesis of Metal Nanoparticles by Microbes. AdvancesinColloidandInterfaceScience, 156, 1-13. https://doi.org/10.1016/j.cis.2010.02.001
[34]
Kianpour, S., Ebrahiminezhad, A., Negahdaripour, M., Mohkam, M., Mohammadi, F., Niknezhad, S.V., et al. (2018) Characterization of Biogenic Fe (III)-Binding Exopolysaccharide Nanoparticles Produced by Ralstoniasp.Sk03. BiotechnologyProgress, 34, 1167-1176. https://doi.org/10.1002/btpr.2660
[35]
Jubran, A.S., Al-Zamely, O.M. and Al-Ammar, M.H. (2020) A Study of Iron Oxide Nanoparticles Synthesis by Using Bacteria. InternationalJournalofPharmaceuticalQualityAssurance, 11, 88-92. https://doi.org/10.25258/ijpqa.11.1.13
[36]
Jiang, X., Fan, X., Xu, W., Zhang, R. and Wu, G. (2019) Biosynthesis of Bimetallic Au-Ag Nanoparticles Using Escherichiacoli and Its Biomedical Applications. ACSBiomaterialsScience&Engineering, 6, 680-689. https://doi.org/10.1021/acsbiomaterials.9b01297
[37]
Mi, C., Wang, Y., Zhang, J., Huang, H., Xu, L., Wang, S., et al. (2011) Biosynthesis and Characterization of CDs Quantum Dots in Genetically Engineered Escherichiacoli. JournalofBiotechnology, 153, 125-132. https://doi.org/10.1016/j.jbiotec.2011.03.014
[38]
Gurunathan, S., Kalishwaralal, K., Vaidyanathan, R., Venkataraman, D., Pandian, S.R.K., Muniyandi, J., et al. (2009) Biosynthesis, Purification and Characterization of Silver Nanoparticles Using Escherichiacoli. ColloidsandSurfacesB: Biointerfaces, 74, 328-335. https://doi.org/10.1016/j.colsurfb.2009.07.048
[39]
Murillo-Rábago, E.I., Vilchis-Nestor, A.R., Juarez-Moreno, K., Garcia-Marin, L.E., Quester, K. and Castro-Longoria, E. (2022) Optimized Synthesis of Small and Stable Silver Nanoparticles Using Intracellular and Extracellular Components of Fungi: An Alternative for Bacterial Inhibition. Antibiotics, 11, Article 800. https://doi.org/10.3390/antibiotics11060800
[40]
Nkosi, N.C., Basson, A.K., Ntombela, Z.G., Dlamini, N.G. and Pullabhotla, R.V.S.R. (2025) Green Synthesis and Characterization of Iron Nanoparticles Synthesized from Bioflocculant for Wastewater Treatment: A Review. BiotechnologyNotes, 6, 10-31. https://doi.org/10.1016/j.biotno.2024.12.001
[41]
Siglienti, I., Bendszus, M., Kleinschnitz, C. and Stoll, G. (2006) Cytokine Profile of Iron-Laden Macrophages: Implications for Cellular Magnetic Resonance Imaging. JournalofNeuroimmunology, 173, 166-173. https://doi.org/10.1016/j.jneuroim.2005.11.011
[42]
Moore, A., Marecos, E., Bogdanov, A. and Weissleder, R. (2000) Tumoral Distribution of Long-Circulating Dextran-Coated Iron Oxide Nanoparticles in a Rodent Model. Radiology, 214, 568-574. https://doi.org/10.1148/radiology.214.2.r00fe19568
[43]
Berry, C.C., Wells, S., Charles, S., Aitchison, G. and Curtis, A.S.G. (2004) Cell Response to Dextran-Derivatised Iron Oxide Nanoparticles Post Internalisation. Biomaterials, 25, 5405-5413. https://doi.org/10.1016/j.biomaterials.2003.12.046
[44]
Sathiyaseelan, A., Saravanakumar, K., Mariadoss, A.V.A. and Wang, M. (2021) Antimicrobial and Wound Healing Properties of FeO Fabricated Chitosan/PVA Nanocomposite Sponge. Antibiotics, 10, Article 524. https://doi.org/10.3390/antibiotics10050524
[45]
Zangeneh, M.M., Ghaneialvar, H., Akbaribazm, M., Ghanimatdan, M., Abbasi, N., Goorani, S., et al. (2019) Novel Synthesis of Falcariavulgaris Leaf Extract Conjugated Copper Nanoparticles with Potent Cytotoxicity, Antioxidant, Antifungal, Antibacterial, and Cutaneous Wound Healing Activities under in Vitro and inVivo Condition. JournalofPhotochemistryandPhotobiologyB: Biology, 197, Article ID: 111556. https://doi.org/10.1016/j.jphotobiol.2019.111556
[46]
Nahari, M.H., Al Ali, A., Asiri, A., Mahnashi, M.H., Shaikh, I.A., Shettar, A.K., et al. (2022) Green Synthesis and Characterization of Iron Nanoparticles Synthesized from Aqueous Leaf Extract of Vitex Leucoxylon and Its Biomedical Applications. Nanomaterials, 12, Article 2404. https://doi.org/10.3390/nano12142404
[47]
Coricovac, D., Moacă, E., Pinzaru, I., Cîtu, C., Soica, C., Mihali, C., et al. (2017) Biocompatible Colloidal Suspensions Based on Magnetic Iron Oxide Nanoparticles: Synthesis, Characterization and Toxicological Profile. FrontiersinPharmacology, 8, Article 154. https://doi.org/10.3389/fphar.2017.00154
[48]
Nowak-Jary, J. and Machnicka, B. (2024) Comprehensive Analysis of the Potential Toxicity of Magnetic Iron Oxide Nanoparticles for Medical Applications: Cellular Mechanisms and Systemic Effects. InternationalJournalofMolecularSciences, 25, Article 12013. https://doi.org/10.3390/ijms252212013
[49]
Amin, R.M., Abdelmonem, A., Verwanger, T., Elsherbini, E. and Krammer, B. (2014) Cytotoxicity of Magnetic Nanoparticles on Normal and Malignant Human Skin Cells. NanoLIFE, 4, Article ID: 1440002. https://doi.org/10.1142/s1793984414400029
[50]
Arias, L.S., Pessan, J.P., Vieira, A.P.M., Lima, T.M.T.d., Delbem, A.C.B. and Monteiro, D.R. (2018) Iron Oxide Nanoparticles for Biomedical Applications: A Perspective on Synthesis, Drugs, Antimicrobial Activity, and Toxicity. Antibiotics, 7, Article 46. https://doi.org/10.3390/antibiotics7020046
[51]
Abakumov, M.A., Semkina, A.S., Skorikov, A.S., Vishnevskiy, D.A., Ivanova, A.V., Mironova, E., et al. (2018) Toxicity of Iron Oxide Nanoparticles: Size and Coating Effects. JournalofBiochemicalandMolecularToxicology, 32, e22225. https://doi.org/10.1002/jbt.22225
[52]
Snezhkina, A.V., Kudryavtseva, A.V., Kardymon, O.L., Savvateeva, M.V., Melnikova, N.V., Krasnov, G.S., et al. (2019) ROS Generation and Antioxidant Defense Systems in Normal and Malignant Cells. OxidativeMedicineandCellularLongevity, 2019, Article ID: 6175804. https://doi.org/10.1155/2019/6175804
[53]
Yarjanli, Z., Ghaedi, K., Esmaeili, A., Rahgozar, S. and Zarrabi, A. (2017) Iron Oxide Nanoparticles May Damage to the Neural Tissue through Iron Accumulation, Oxidative Stress, and Protein Aggregation. BMCNeuroscience, 18, Article No. 51. https://doi.org/10.1186/s12868-017-0369-9