|
基于半解析方法的分级多段压裂水平井产能预测模型研究
|
Abstract:
基于半解析理论提出的裂缝之间和裂缝内部的离散和耦合方法,对研究复杂缝网下的水平井产能预测方法对非常规油气开采具有重要意义。本文基于渗流理论和源函数理论,建立了流体在裂缝中、地层中以及在井筒内的渗流模型、水平井筒压力损失计算模型、水平井间干扰模型;通过引入裂缝中心坐标作为计算参数,对裂缝进行离散化处理,实现了裂缝间、裂缝与井筒间、裂缝与地层间的耦合,建立了水平井注采井网的产能预测模型。通过对产能影响因素分析可得:早期裂缝数量的增加使裂缝与储层接触面积变得更大,渗流通道增多,更多的流体可以通过裂缝流向井筒,从而提高产量。并随着地层渗透率、裂缝长度、裂缝导流能力的增大,流体渗流阻力变小、无阻流量增大,提高了储层的采出程度,产能会进一步显著提高。同时本文对油田现场分级多段压裂水平井产能预测具有一定的参考应用价值。
The discretization and coupling methods proposed between and within fractures based on semi-analytical theory are of great significance for studying productivity prediction methods for horizontal wells in complex fracture networks in unconventional oil and gas extraction. This paper establishes fluid flow models in fractures, formations, and wellbores, pressure loss calculation models for horizontal wellbores, and interference models between horizontal wells based on fluid flow theory and source function theory. By introducing the coordinates of fracture centers as calculation parameters, the fractures are discretized, enabling coupling between fractures, between fractures and wellbores, and between fractures and formations. Furthermore, a productivity prediction model for horizontal injection-production well networks is established. Analysis of factors influencing productivity reveals that an increase in the number of fractures in the early stages results in a larger contact area between fractures and the reservoir, more flow channels, and more fluid flowing into the wellbore through fractures, thereby enhancing production. As formation permeability, fracture length, and fracture conductivity increase, fluid flow resistance decreases and the absolute open flow potential increases, leading to higher reservoir recovery and further significant improvements in productivity. Additionally, this paper provides certain reference value and application significance for productivity prediction of staged multi-fractured horizontal wells in oilfield operations.
[1] | 李亚龙, 刘先贵, 胡志明, 等. 页岩气水平井产能预测数值模型综述[J]. 地球科学进展, 2020, 35(4): 350-362. |
[2] | Cinco L., H., Samaniego V., F. and Dominguez A., N. (1978) Transient Pressure Behavior for a Well with a Finite-Conductivity Vertical Fracture. Society of Petroleum Engineers Journal, 18, 253-264. https://doi.org/10.2118/6014-pa |
[3] | Rodriguez, F., Horne, R.N. and Cinco-Ley, H. (1984) Partially Penetrating Vertical Fractures: Pressure Transient Behavior of a Finite-Conductivity Fracture. Proceedings of SPE Annual Technical Conference and Exhibition, Houston, 16-19 September 1984, SPE-13057-MS. https://doi.org/10.2523/13057-ms |
[4] | Guo, G. and Evans, R.D. (1993) Pressure-Transient Behavior and Inflow Performance of Horizontal Wells Intersecting Discrete Fractures. SPE Annual Technical Conference and Exhibition, Houston, 3-6 October 1993, SPE-26446-MS. https://doi.org/10.2118/26446-ms |
[5] | Horne, R.N. and Temeng, K.O. (1995) Relative Productivities and Pressure Transient Modeling of Horizontal Wells with Multiple Fractures. Middle East Oil Show, Bahrain, 11-14 March 1995, SPE-29891-MS. https://doi.org/10.2118/29891-ms |
[6] | Larsen, L. and Hegre, T.M. (1994) Pressure Transient Analysis of Multifractured Horizontal Wells. SPE Annual Technical Conference and Exhibition, New Orleans, 25-28 September 1994, SPE-28389-MS. https://doi.org/10.2118/28389-ms |
[7] | 李海涛, 王俊超, 李颖, 等. 基于体积源的分段压裂水平井产能评价方法[J]. 天然气工业, 2015, 35(9): 55-63. |
[8] | Yao, S., Zeng, F., Liu, H. and Zhao, G. (2013) A Semi-Analytical Model for Multi-Stage Fractured Horizontal Wells. Journal of Hydrology, 507, 201-212. https://doi.org/10.1016/j.jhydrol.2013.10.033 |
[9] | Zongxiao, R., Xiaodong, W., Dandan, L., Rui, R., Wei, G., Zhiming, C., et al. (2016) Semi-analytical Model of the Transient Pressure Behavior of Complex Fracture Networks in Tight Oil Reservoirs. Journal of Natural Gas Science and Engineering, 35, 497-508. https://doi.org/10.1016/j.jngse.2016.09.006 |
[10] | Chen, Z., Liao, X., Zhao, X., Lv, S. and Zhu, L. (2016) A Semianalytical Approach for Obtaining Type Curves of Multiple-Fractured Horizontal Wells with Secondary-Fracture Networks. SPE Journal, 21, 538-549. https://doi.org/10.2118/178913-pa |
[11] | 李晓军, 张琪, 路智勇. 断块油藏水平井与直井组合井网渗流解析解及其应用[J]. 中国石油大学学报(自然科学版), 2010, 34(3): 84-88. |
[12] | 阴国锋, 徐怀民, 叶双江, 等. 水平井注采井网条件下加密水平井产能评价模型[J]. 中国石油大学学报(自然科学版), 2011, 35(4): 93-97. |
[13] | 刘今子, 邸伟娇, 宋考平, 等. 基于井网单元的非均质低渗透油藏产能计算方法[J]. 东北石油大学学报, 2018, 42(4): 101-108. |
[14] | 郭小哲, 王晶, 刘学锋. 页岩气储层压裂水平井气-水两相渗流模型[J]. 石油学报, 2016, 37(9): 1165-1170. |
[15] | Chen, H., Feng, Q., Zhang, X., Zhou, W. and Geng, Y. (2017) A Prediction Formula for Ratio of Injection-Production Control Area in Triangle Well Pattern. Journal of Petroleum Exploration and Production Technology, 8, 195-203. https://doi.org/10.1007/s13202-017-0330-6 |
[16] | Wen, J., Luo, W. and Yin, Q.G. (2019) Productivity Prediction of Fractured Horizontal Wells with Low Permeability Flow Characteristics. Journal of Environmental Engineering and Landscape Management, 27, 82-92. |
[17] | Sun, M.S., Liu, C.Y., Feng, C.J., et al. (2017) Main Controlling Factors and Predictive Models for the Study of the Characteristics of Remaining Oil Distribution during the High Water-Cut Stage in Fuyu oilfield, Songliao Basin, China. Energy Exploration & Exploitation, 36, 97-113. |
[18] | Xiao, H., Chen, M., Jing, C., Zhao, H. and Wang, K. (2023) Production Simulation and Prediction of Fractured Horizontal Well with Complex Fracture Network in Shale Gas Reservoir Based on Unstructured Grid. Frontiers in Earth Science, 11, Article 1257219. https://doi.org/10.3389/feart.2023.1257219 |
[19] | Kang, S., Pu, C., Wang, Y., Liu, W., Wang, K., Huang, F., et al. (2022) Parameter Optimization of Asynchronous Cyclic Waterflooding for Horizontal-Vertical Well Patterns in Tight Oil Reservoirs. ACS Omega, 7, 11226-11239. https://doi.org/10.1021/acsomega.2c00097 |
[20] | Tian, L., Chai, X., Wang, P. and Wang, H. (2020) Productivity Prediction Model for Stimulated Reservoir Volume Fracturing in Tight Glutenite Reservoir Considering Fluid-Solid Coupling. Frontiers in Energy Research, 8, Article 573817. https://doi.org/10.3389/fenrg.2020.573817 |
[21] | Gao, M., Wei, C., Zhao, X., Huang, R., Li, B., Yang, J., et al. (2023) Intelligent Optimization of Gas Flooding Based on Multi-Objective Approach for Efficient Reservoir Management. Processes, 11, Article 2226. https://doi.org/10.3390/pr11072226 |
[22] | 强贤宇, 侯大力, 向雪妮, 等. 一种新的多因素压裂水平井产能评价方法[J]. 科学技术与工程, 2023, 23(10): 4168-4175. |
[23] | Su, Z., Gao, S., Li, Z., Li, T. and Kang, N. (2024) Integrated Waterflooding Effect Evaluation Methodology for Carbonate Fractured-Vuggy Reservoirs Based on the Unascertained Measure-Mahalanobis Distance Theory. Processes, 12, Article 274. https://doi.org/10.3390/pr12020274 |
[24] | 朱维耀, 马东旭, 亓倩, 等. 复杂缝网页岩压裂水平井多区耦合产能分析[J]. 天然气工业, 2017, 37(7): 60-68. |
[25] | 张芨强, 雷霄, 张乔良, 等. 低渗透气藏产水压裂水平井产能评价[J]. 天然气地球科学, 2019, 30(12): 1701-1708. |
[26] | Zhu, D.W., Hu, Y.L. and Cui, M.Y. (2020) Productivity Simulation of Hydraulically Fractured Wells Based on Hybrid Local grid Refinement and Embedded Discrete Fracture Model. Petroleum Exploration and Development, 47, 365-373. |
[27] | Zhang, L. and Gu, D.H. (2024) New Model for Predicting Production Capacity of Horizontal Well Volume Fracturing in Tight Reservoirs. ACS Omega, 9, 11806-11819. |
[28] | 邓美洲, 牛娜, 尹霜, 等. 各向异性致密砂岩气藏分段压裂水平井气水两相产能预测模型[J]. 油气地质与采收率, 2024, 31(3): 99-111. |
[29] | Xiong, S.C., Liu, S.Y. and Weng, D.W. (2022) A Fractional Step Method to Solve Productivity Model of Horizontal Wells Based on Heterogeneous Structure of Fracture Network. Energies, 15, Article 3907. |
[30] | Qian, W., Shengxian, Z., Chenxi, Y., Wenbao, Z., Chao, F. and Peng, T. (2022) Horizontal Well Orientation Optimization Based on the Integration of Hydraulic Fracturing Network Simulation and Productivity Prediction. 56th U.S. Rock Mechanics/Geomechanics Symposium, Santa Fe, 26-29 June 2022, ARMA-2022-0681. https://doi.org/10.56952/arma-2022-0681 |
[31] | Huzhen, W., Tiancheng, L., Zhuangzhuang, S., Chunyao, W., Zhenyu, L., Zhijun, Z., et al. (2022) Formation Pressure Distribution and Productivity Prediction of Fractured Horizontal Wells in Stress Sensitive Reservoirs. Frontiers in Energy Research, 10, Article 978134. https://doi.org/10.3389/fenrg.2022.978134 |
[32] | Sun, R., Hu, J., Zhang, Y. and Li, Z. (2020) A Semi-Analytical Model for Investigating the Productivity of Fractured Horizontal Wells in Tight Oil Reservoirs with Micro-Fractures. Journal of Petroleum Science and Engineering, 186, Article ID: 106781. https://doi.org/10.1016/j.petrol.2019.106781 |
[33] | Tao, L., Guo, J., Li, Z., Wang, X., Yang, S., Shi, K., et al. (2021) A New Productivity Prediction Hybrid Model for Multi-Fractured Horizontal Wells in Tight Oil Reservoirs. SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition, 12-14 October 2021, SPE-205620-MS. https://doi.org/10.2118/205620-ms |
[34] | Chen, X., Li, J., Gao, P. and Zhou, J. (2022) Prediction of Shale Gas Horizontal Wells Productivity after Volume Fracturing Using Machine Learning—An LSTM Approach. Petroleum Science and Technology, 40, 1861-1877. https://doi.org/10.1080/10916466.2022.2032739 |
[35] | 刘思雨, 王坤, 谢明英, 等. 低渗油藏不规则缝网压裂水平井产能预测模型[J]. 计算物理, 2024, 41(4): 503-514. |
[36] | 张秋实, 何金宝, 胡志勇, 等. 延长油田低渗透储层压裂水平井产能预测模型[J]. 当代化工, 2022, 51(6): 1420-1424. |
[37] | Wang, Z., Zhao, X., Yang, Z., Xiao, Q. and Lan, J. (2022) Modeling for Volume-Fracturing Vertical Wells in Tight Oil Reservoir Considering NMR-Based Research on Imbibition. Lithosphere, 2022, Article ID: 2730294. https://doi.org/10.2113/2022/2730294 |
[38] | Deng, J., He, J.J. and Gao, L. (2024) Productivity Model for Multi-Fractured Horizontal Wells Accounting for Cross-Scale Flow of Gas and Total Factor Characteristics of Fractures. Fuel, 360, Article ID: 130581. |
[39] | Zhang, D.X., Zhang, L.H. and Tang, H.Y. (2022) Fully Coupled Fluid-Solid Productivity Numerical Simulation of Multistage Fractured Horizontal Well in Tight Oil Reservoirs. Petroleum Exploration and Development, 49, 382-393. |
[40] | Xiong, S., Liu, S., Weng, D., Shen, R., Yu, J., Yan, X., et al. (2022) A Fractional Step Method to Solve Productivity Model of Horizontal Wells Based on Heterogeneous Structure of Fracture Network. Energies, 15, Article 3907. https://doi.org/10.3390/en15113907 |
[41] | Osisanya, S.O., Ayokunle, A.T., Ghosh, B. and Suboyin, A. (2021) Modified Horizontal Well Productivity Model for a Tight Gas Reservoir Subjected to Non-Uniform Damage and Turbulence. Energies, 14, Article 8334. https://doi.org/10.3390/en14248334 |
[42] | Ran, L., Gaomin, L., Jinzhou, Z., Lan, R. and Jianfa, W. (2022) Productivity Model of Shale Gas Fractured Horizontal Well Considering Complex Fracture Morphology. Journal of Petroleum Science and Engineering, 208, Article ID: 109511. https://doi.org/10.1016/j.petrol.2021.109511 |
[43] | Luo, A., Li, Y., Wu, L., Peng, Y. and Tang, W. (2021) Fractured Horizontal Well Productivity Model for Shale Gas Considering Stress Sensitivity, Hydraulic Fracture Azimuth, and Interference between Fractures. Natural Gas Industry B, 8, 278-286. https://doi.org/10.1016/j.ngib.2021.04.008 |
[44] | 孙若凡, 张彦军, 张秀玲, 等. 双重介质致密油藏压裂水平井产能预测模型及参数分析[J]. 科学技术与工程, 2019, 19(10): 89-96. |