全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

后生元辅助牙周非手术治疗的应用研究进展
Research Advances in the Application of Postbiotics as an Adjunctive Therapy to Non-Surgical Periodontal Treatment

DOI: 10.12677/jcpm.2025.42202, PP. 468-475

Keywords: 后生元,侵袭性牙周炎,牙周治疗
Postbiotics
, Aggressive Periodontitis, Periodontal Therapy

Full-Text   Cite this paper   Add to My Lib

Abstract:

后生元,定义为对宿主健康有益的无生命微生物或其成分的制剂,已在多种炎症相关疾病的研究中显示出其潜在价值。尽管其在牙周炎防治领域展现出一定程度的应用前景,但目前缺乏针对后生元治疗牙周炎的临床试验,其发展潜能和作用机制需要进一步探究。本综述旨在探讨后生元对牙周炎相关软组织破坏和牙槽骨吸收的影响,为未来的研究方向和临床应用提供参考。
Postbiotics, referring to non-living microorganisms or their components that provide health benefits to the host, have demonstrated potential value in various inflammation-associated pathologies. Although postbiotics exhibit promising applications in the prevention and treatment of periodontitis, clinical trials specifically evaluating their efficacy in periodontitis management remain scarce. Further investigation is needed to elucidate their therapeutic potential and underlying mechanisms. This review aims to explore the effects of postbiotics on soft tissue destruction and alveolar bone resorption associated with periodontitis, providing insights for future research directions and clinical applications.

References

[1]  Kwon, T., Lamster, I.B. and Levin, L. (2021) Current Concepts in the Management of Periodontitis. International Dental Journal, 71, 462-476.
https://doi.org/10.1111/idj.12630
[2]  Quirynen, M., De Soete, M., Dierickx, K. and Van Steenberghe, D. (2001) The Intra‐Oral Translocation of Periodontopathogens Jeopardises the Outcome of Periodontal Therapy. Journal of Clinical Periodontology, 28, 499-507.
https://doi.org/10.1034/j.1600-051x.2001.028006499.x
[3]  Gager, Y., Koppe, J., Vogl, I., Gabert, J. and Jentsch, H. (2023) Antibiotic Resistance Genes in the Subgingival Microbiome and Implications for Periodontitis Therapy. Journal of Periodontology, 94, 1295-1301.
https://doi.org/10.1002/jper.22-0696
[4]  Matsubara, V.H., Bandara, H.M.H.N., Ishikawa, K.H., Mayer, M.P.A. and Samaranayake, L.P. (2016) The Role of Probiotic Bacteria in Managing Periodontal Disease: A Systematic Review. Expert Review of Anti-Infective Therapy, 14, 643-655.
https://doi.org/10.1080/14787210.2016.1194198
[5]  吴冰悦, 赵武杰, 贾漪涛. 后生元的临床应用价值及前景展望[J]. 肠外与肠内营养, 2022, 29(4): 242-247.
[6]  Teame, T., Wang, A., Xie, M., Zhang, Z., Yang, Y., Ding, Q., et al. (2020) Paraprobiotics and Postbiotics of Probiotic Lactobacilli, Their Positive Effects on the Host and Action Mechanisms: A Review. Frontiers in Nutrition, 7, Article ID: 570344.
https://doi.org/10.3389/fnut.2020.570344
[7]  刘红霞, 李雪利, 吴秀英, 等. 后生元研究进展及应用现状[J]. 食品科学, 2024, 45(1): 326-333.
[8]  瞿茜楠, 兰冬雪, 黄天, 等. 后生元的功能及应用研究进展[J]. 食品研究与开发, 2023, 44(7): 6-13.
[9]  Żółkiewicz, J., Marzec, A., Ruszczyński, M. and Feleszko, W. (2020) Postbiotics—A Step beyond Pre-and Probiotics. Nutrients, 12, Article No. 2189.
https://doi.org/10.3390/nu12082189
[10]  Moraes, R.M., Schlagenhauf, U. and Anbinder, A.L. (2022) Outside the Limits of Bacterial Viability: Postbiotics in the Management of Periodontitis. Biochemical Pharmacology, 201, Article ID: 115072.
https://doi.org/10.1016/j.bcp.2022.115072
[11]  Shin, H., Baek, D. and Lee, S. (2018) Inhibitory Effect of Lactococcus lactis on the Bioactivity of Periodontopathogens. The Journal of General and Applied Microbiology, 64, 55-61.
https://doi.org/10.2323/jgam.2017.06.003
[12]  Lim, H., Yeu, J., Hong, S. and Kang, M. (2018) Characterization of Antibacterial Cell-Free Supernatant from Oral Care Probiotic Weissella cibaria, CMU. Molecules, 23, Article No. 1984.
https://doi.org/10.3390/molecules23081984
[13]  Jang, H., Kang, M., Yi, S., Hong, J. and Hong, S. (2016) Comparative Study on the Characteristics of Weissella cibaria CMU and Probiotic Strains for Oral Care. Molecules, 21, Article No. 1752.
https://doi.org/10.3390/molecules21121752
[14]  Liu, T., Tsai, T. and Pan, T. (2018) The Anti-Periodontitis Effects of Ethanol Extract Prepared Using Lactobacillus paracasei Subsp. Paracasei NTU 101. Nutrients, 10, Article No. 472.
https://doi.org/10.3390/nu10040472
[15]  Moman, R., O’Neill, C.A., Ledder, R.G., Cheesapcharoen, T. and McBain, A.J. (2020) Mitigation of the Toxic Effects of Periodontal Pathogens by Candidate Probiotics in Oral Keratinocytes, and in an Invertebrate Model. Frontiers in Microbiology, 11, Article No. 999.
https://doi.org/10.3389/fmicb.2020.00999
[16]  Chen, Y., Hsieh, P., Ho, H., Hsieh, S., Kuo, Y., Yang, S., et al. (2020) Antibacterial Activity of Viable and Heat‐Killed Probiotic Strains against Oral Pathogens. Letters in Applied Microbiology, 70, 310-317.
https://doi.org/10.1111/lam.13275
[17]  Geraldo, B.M.C., Batalha, M.N., Milhan, N.V.M., Rossoni, R.D., Scorzoni, L. and Anbinder, A.L. (2019) Heat‐Killed Lactobacillus reuteri and Cell‐Free Culture Supernatant Have Similar Effects to Viable Probiotics during Interaction with Porphyromonas gingivalis. Journal of Periodontal Research, 55, 215-220.
https://doi.org/10.1111/jre.12704
[18]  Santos, T.A., Scorzoni, L., Correia, R., Junqueira, J.C. and Anbinder, A.L. (2020) Interaction between Lactobacillus reuteri and Periodontopathogenic Bacteria Using in Vitro and in Vivo (G. mellonella) Approaches. Pathogens and Disease, 78, ftaa044.
https://doi.org/10.1093/femspd/ftaa044
[19]  Ishikawa, K.H., Mita, D., Kawamoto, D., Nicoli, J.R., Albuquerque-Souza, E., Lorenzetti Simionato, M.R., et al. (2020) Probiotics Alter Biofilm Formation and the Transcription of Porphyromonas gingivalis Virulence-Associated Genes. Journal of Oral Microbiology, 12, Article ID: 1805553.
https://doi.org/10.1080/20002297.2020.1805553
[20]  Ishikawa, K.H., Bueno, M.R., Kawamoto, D., Simionato, M.R.L. and Mayer, M.P.A. (2021) Lactobacilli Postbiotics Reduce Biofilm Formation and Alter Transcription of Virulence Genes of Aggregatibacter actinomycetemcomitans. Molecular Oral Microbiology, 36, 92-102.
https://doi.org/10.1111/omi.12330
[21]  Yang, K.M., Kim, J., Kim, H., Kim, Y., Oh, J., Jung, H., et al. (2021) Lactobacillus reuteri AN417 Cell-Free Culture Supernatant as a Novel Antibacterial Agent Targeting Oral Pathogenic Bacteria. Scientific Reports, 11, Article No. 1631.
https://doi.org/10.1038/s41598-020-80921-x
[22]  Lu, S., Huang, R. and Chou, T. (2013) Magnolol Ameliorates Ligature-Induced Periodontitis in Rats and Osteoclastogenesis: In Vivo and in Vitro Study. Evidence-Based Complementary and Alternative Medicine, 2013, Article ID: 634095.
https://doi.org/10.1155/2013/634095
[23]  Taubman, M.A., Valverde, P., Han, X. and Kawai, T. (2005) Immune Response: The Key to Bone Resorption in Periodontal Disease. Journal of Periodontology, 76, 2033-2041.
https://doi.org/10.1902/jop.2005.76.11-s.2033
[24]  Song, F., Wei, C., Zhou, L., Qin, A., Yang, M., Tickner, J., et al. (2017) Luteoloside Prevents Lipopolysaccharide‐Induced Osteolysis and Suppresses Rankl‐Induced Osteoclastogenesis through Attenuating RANKL Signaling Cascades. Journal of Cellular Physiology, 233, 1723-1735.
https://doi.org/10.1002/jcp.26084
[25]  Jung, J., Baek, S., Nguyen, T.H., Kim, J.W., Kang, C., Kim, S., et al. (2021) Effects of Probiotic Culture Supernatant on Cariogenic Biofilm Formation and Rankl-Induced Osteoclastogenesis in RAW 264.7 Macrophages. Molecules, 26, Article No. 733.
https://doi.org/10.3390/molecules26030733
[26]  Maekawa, T. and Hajishengallis, G. (2014) Topical Treatment with Probiotic Lactobacillus brevis CD2 Inhibits Experimental Periodontal Inflammation and Bone Loss. Journal of Periodontal Research, 49, 785-791.
https://doi.org/10.1111/jre.12164
[27]  Di Marzio, L., Paola Russo, F., D'Alo, S., Biordi, L., Ulisse, S., Amicosante, G., et al. (2001) Apoptotic Effects of Selected Strains of Lactic Acid Bacteria on a Human T Leukemia Cell Line Are Associated with Bacterial Arginine Deiminase and/or Sphingomyelinase Activities. Nutrition and Cancer, 40, 185-196.
https://doi.org/10.1207/s15327914nc402_16
[28]  Reher, V.G.S., Zenóbio, E.G., Costa, F.O., Reher, P. and Soares, R.V. (2007) Nitric Oxide Levels in Saliva Increase with Severity of Chronic Periodontitis. Journal of Oral Science, 49, 271-276.
https://doi.org/10.2334/josnusd.49.271
[29]  Herrera, B.S., Martins‐Porto, R., Maia‐Dantas, A., Campi, P., Spolidorio, L.C., Costa, S.K.P., et al. (2011) Inos‐Derived Nitric Oxide Stimulates Osteoclast Activity and Alveolar Bone Loss in Ligature‐Induced Periodontitis in Rats. Journal of Periodontology, 82, 1608-1615.
https://doi.org/10.1902/jop.2011.100768
[30]  Moraes, R.M., Lescura, C.M., Milhan, N.V.M., Ribeiro, J.L., Silva, F.A. and Anbinder, A.L. (2020) Live and Heat-Killed Lactobacillus reuteri Reduce Alveolar Bone Loss on Induced Periodontitis in Rats. Archives of Oral Biology, 119, Article ID: 104894.
https://doi.org/10.1016/j.archoralbio.2020.104894
[31]  Park, E., Ha, J., Lim, S., Kim, G. and Yoon, Y. (2021) Development of Postbiotics by Whey Bioconversion with Enterococcus faecalis M157 KACC81148BP and Lactococcus lactis CAU2013 KACC81152BP for Treating Periodontal Disease and Improving Gut Health. Journal of Dairy Science, 104, 12321-12331.
https://doi.org/10.3168/jds.2021-20616
[32]  Gatej, S.M., Marino, V., Bright, R., Fitzsimmons, T.R., Gully, N., Zilm, P., et al. (2017) Probiotic Lactobacillus rhamnosus GG Prevents Alveolar Bone Loss in a Mouse Model of Experimental Periodontitis. Journal of Clinical Periodontology, 45, 204-212.
https://doi.org/10.1111/jcpe.12838
[33]  Van Dyke, T.E., Bartold, P.M. and Reynolds, E.C. (2020) The Nexus between Periodontal Inflammation and Dysbiosis. Frontiers in Immunology, 11, Article No. 511.
https://doi.org/10.3389/fimmu.2020.00511
[34]  Taguchi, C., Arikawa, K., Saitou, M., Uchiyama, T., Watanabe, I., Tobita, K., et al. (2015) Orally Ingested Lactobacillus crispatus KT-11 Inhibits Porphyromonas gingivalis Infected Alveolar Bone Resorption. International Journal of Oral-Medical Sciences, 13, 102-109.
https://doi.org/10.5466/ijoms.13.102
[35]  Iwasaki, K., Maeda, K., Hidaka, K., et al. (2016) Daily Intake of Heat-Killed Lactobacillus plantarum L-137 Decreases the Probing Depth in Patients Undergoing Supportive Periodontal Therapy. Oral Health and Preventive Dentistry, 14, 207-214.
[36]  Hirose, Y., Yamamoto, Y., Yoshikai, Y. and Murosaki, S. (2013) Oral Intake of Heat-Killed Lactobacillus plantarum L-137 Decreases the Incidence of Upper Respiratory Tract Infection in Healthy Subjects with High Levels of Psychological Stress. Journal of Nutritional Science, 2, e39.
https://doi.org/10.1017/jns.2013.35
[37]  Butera, A., Pascadopoli, M., Pellegrini, M., Gallo, S., Zampetti, P., Cuggia, G., et al. (2022) Domiciliary Use of Chlorhexidine vs Postbiotic Gels in Patients with Peri-Implant Mucositis: A Split-Mouth Randomized Clinical Trial. Applied Sciences, 12, Article No. 2800.
https://doi.org/10.3390/app12062800
[38]  Rui, W., Zhong, S., Li, X., Tang, X., Wang, L. and Yang, J. (2024) Evaluating the Role of Postbiotics in the Modulation of Human Oral Microbiota: A Randomized Controlled Clinical Trial. Probiotics and Antimicrobial Proteins.
https://doi.org/10.1007/s12602-024-10238-y
[39]  Lin, C., Chen, Y., Ho, H., Kuo, Y., Lin, W., Chen, J., et al. (2022) Impact of the Food Grade Heat-Killed Probiotic and Postbiotic Oral Lozenges in Oral Hygiene. Aging, 14, 2221-2238.
https://doi.org/10.18632/aging.203923
[40]  丁琴凤, 马丽, 冯希平. 嗜酸乳杆菌及其灭活菌粘附及拮抗牙周致病菌特性研究[J]. 现代口腔医学杂志, 2012, 26(6): 378-382.
[41]  Li, X., Zhao, Z., Guo, S., Yang, C., Gao, Y., Li, L., et al. (2024) Effects of Toothpaste Containing Inactivated Lacticaseibacillus paracasei Probio-01 on Plaque-Induced Gingivitis and Dental Plaque Microbiota. Microbial Pathogenesis, 192, Article ID: 106701.
https://doi.org/10.1016/j.micpath.2024.106701

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133