|
金鸡纳生物碱衍生的手性相转移催化剂的研究进展
|
Abstract:
金鸡纳生物碱因其独特的化学结构和廉价的商业可得性使其在不对称合成中具有许多应用,可以作为有效的有机催化剂或手性配体。不对称相转移催化已成为一个获得手性化合物的重要途径,利用有机小分子催化的不对称合成反应在过去三十多年时间里得到了快速的发展;其中,金鸡纳生物碱衍生的手性相转移催化剂在不对称相转移催化反应中的应用逐渐广泛,且取得了较为理想的效果。各种金鸡纳生物碱衍生的手性相转移催化剂被开发出来,并都表现出了优秀的催化活性和立体选择性。
The unique chemical structure and cheap commercial availability of cinchona alkaloids have given them many applications in asymmetric synthesis as effective organocatalysts or chiral ligands. Asymmetric phase transfer catalysis has become an important route to obtain chiral compounds, and asymmetric synthesis reactions catalyzed by organic small molecules have been developed rapidly in the past three decades; among them, chiral phase transfer catalysts derived from chichenna alkaloids have been widely used in asymmetric phase transfer catalyzed reactions, and they have achieved relatively satisfactory results. Various chiral phase transfer catalysts derived from cinchona alkaloids have been developed and all of them have shown excellent catalytic activity and stereoselectivity.
[1] | Wilairatana, P., Krudsood, S., Treeprasertsuk, S., Chalermrut, K. and Looareesuwan, S. (2002) The Future Outlook of Antimalarial Drugs and Recent Work on the Treatment of Malaria. Archives of Medical Research, 33, 416-421. https://doi.org/10.1016/s0188-4409(02)00371-5 |
[2] | Jew, S.S. and Park, H.G. (2009) Cinchona-Based Phase-Transfer Catalysts for Asymmetric Synthesis. Chemical Communications, 46, 7090-7103. https://doi.org/10.1039/b914028j |
[3] | Hoffmann, H.M.R. and Frackenpohl, J. (2004) Cover Picture: Recent Advances in Cinchona Alkaloid Chemistry (Eur. J. Org. Chem. 21/2004). European Journal of Organic Chemistry, 2004, 4285-4285. https://doi.org/10.1002/ejoc.200490042 |
[4] | Franco, P., Klaus, P.M., Minguillón, C. and Lindner, W. (2001) Evaluation of the Contribution to Enantioselectivity of Quinine and Quinidine Scaffolds in Chemically and Physically Mixed Chiral Selectors. Chirality, 13, 177-186. https://doi.org/10.1002/chir.1017 |
[5] | Hoffmann, C.V., Pell, R., Lämmerhofer, M. and Lindner, W. (2008) Synergistic Effects on Enantioselectivity of Zwitterionic Chiral Stationary Phases for Separations of Chiral Acids, Bases, and Amino Acids by HPLC. Analytical Chemistry, 80, 8780-8789. https://doi.org/10.1021/ac801384f |
[6] | Dolling, U.H., Davis, P. and Grabowski, E.J.J. (1984) Efficient Catalytic Asymmetric Alkylations. 1. Enantioselective Synthesis of (+)-Indacrinone via Chiral Phase-Transfer Catalysis. Journal of the American Chemical Society, 106, 446-447. https://doi.org/10.1021/ja00314a045 |
[7] | O’Donnell, M.J., Bennett, W.D. and Wu, S. (1989) The Stereoselective Synthesis of .alpha.-Amino Acids by Phase-Transfer Catalysis. Journal of the American Chemical Society, 111, 2353-2355. https://doi.org/10.1021/ja00188a089 |
[8] | Lygo, B. and Wainwright, P.G. (1997) A New Class of Asymmetric Phase-Transfer Catalysts Derived from Cinchona Alkaloids—Application in the Enantioselective Synthesis of α-Amino Acids. Tetrahedron Letters, 38, 8595-8598. https://doi.org/10.1016/s0040-4039(97)10293-3 |
[9] | Corey, E.J., Xu, F. and Noe, M.C. (1997) A Rational Approach to Catalytic Enantioselective Enolate Alkylation Using a Structurally Rigidified and Defined Chiral Quaternary Ammonium Salt under Phase Transfer Conditions. Journal of the American Chemical Society, 119, 12414-12415. https://doi.org/10.1021/ja973174y |
[10] | Elango, S., Venugopal, M., Suresh, P.S. and Eni, (2005) Contrast Performance in Catalytic Ability—New Cinchona Phase Transfer Catalysts for Asymmetric Synthesis of α-Amino Acids. Tetrahedron, 61, 1443-1447. https://doi.org/10.1016/j.tet.2004.12.005 |
[11] | Jew, S., Jeong, B., Yoo, M., Huh, H. and Park, H. (2001) Synthesis and Application of Dimeric Cinchona Alkaloid Phase-Transfer Catalysts: α,α’-Bis[o(9)-Allylcinchonidinium]-O, M, or P-Xylene Dibromide. Chemical Communications, No. 14, 1244-1245. https://doi.org/10.1039/b102584h |
[12] | Park, H.G., et al. (2002) Highly Enantioselective and Practical Cinchona-Derived Phase-Transfer Catalysts for the Synthesis of α-Amino Acids. Angewandte Chemie, 114, 3162-3164. |
[13] | Hashimoto, T. and Maruoka, K. (2007) Recent Development and Application of Chiral Phase-Transfer Catalysts. Chemical Reviews, 107, 5656-5682. https://doi.org/10.1021/cr068368n |
[14] | Jew, S., Yoo, M., Jeong, B., Park, I.Y. and Park, H. (2002) An Unusual Electronic Effect of an Aromatic-F in Phase-Transfer Catalysts Derived from Cinchona-Alkaloid. Organic Letters, 4, 4245-4248. https://doi.org/10.1021/ol0267679 |
[15] | Guillena, G., Kreiter, R., van de Coevering, R., Klein Gebbink, R.J.M., van Koten, G., Mazón, P., et al. (2003) Chiroptical Properties and Applications in PTC of New Dendritic Cinchonidine-Derived Ammonium Salts. Tetrahedron: Asymmetry, 14, 3705-3712. https://doi.org/10.1016/j.tetasy.2003.08.030 |
[16] | Lv, J., Zhang, L., Liu, L. and Wang, Y. (2007) A New Class of Acetophenone-Based Cinchona Alkaloids as Phase-Transfer Catalysts: Application to the Enantioselective Synthesis of α-Amino Acids. Chemistry Letters, 36, 1354-1355. https://doi.org/10.1246/cl.2007.1354 |
[17] | Zhang, S., He, W., Wang, Q., Wang, Q., Zhang, B. and Sun, X. (2009) Synthesis of Novel Chiral Phase-Transfer Catalysts and Their Application to Asymmetric Synthesis of α-Amino Acid Derivatives. Synlett, 2009, 1311-1314. https://doi.org/10.1055/s-0029-1216736 |
[18] | Majdecki, M., Niedbala, P. and Jurczak, J. (2019) Amide-Based Cinchona Alkaloids as Phase-Transfer Catalysts: Synthesis and Potential Application. Organic Letters, 21, 8085-8090. https://doi.org/10.1021/acs.orglett.9b03065 |
[19] | Hu, L., Wu, Y., Li, Z. and Deng, L. (2016) Catalytic Asymmetric Synthesis of Chiral γ-Amino Ketones via Umpolung Reactions of Imines. Journal of the American Chemical Society, 138, 15817-15820. https://doi.org/10.1021/jacs.6b09754 |
[20] | Roy, T.K., Parhi, B. and Ghorai, P. (2018) Cinchonamine Squaramide Catalyzed Asymmetric Aza‐Michael Reaction: Dihydroisoquinolines and Tetrahydropyridines. Angewandte Chemie International Edition, 57, 9397-9401. https://doi.org/10.1002/anie.201805020 |
[21] | Portolani, C., Centonze, G., Righi, P. and Bencivenni, G. (2022) Role of Cinchona Alkaloids in the Enantio-and Diastereoselective Synthesis of Axially Chiral Compounds. Accounts of Chemical Research, 55, 3551-3571. https://doi.org/10.1021/acs.accounts.2c00515 |
[22] | Iino, Y., Matsushima, Y., Nakashima, K., Hirashima, S. and Miura, T. (2024) Organocatalyzed Synthesis of γ-Alkenyl Butenolides via Asymmetric Direct Vinylogous Conjugate Addition-Elimination of Substituted Furanone Derivatives to β-Phenylsulfonylenones. The Journal of Organic Chemistry, 89, 11789-11795. https://doi.org/10.1021/acs.joc.4c01218 |
[23] | Haas, B.C., Lim, N., Jermaks, J., Gaster, E., Guo, M.C., Malig, T.C., et al. (2024) Enantioselective Sulfonimidamide Acylation via a Cinchona Alkaloid-Catalyzed Desymmetrization: Scope, Data Science, and Mechanistic Investigation. Journal of the American Chemical Society, 146, 8536-8546. https://doi.org/10.1021/jacs.4c00374 |