|
高强不锈钢绞线网增强ECC板受弯性能数值分析
|
Abstract:
为有效提升工程水泥基复合材料(engineered cementitious composite, ECC)强度的同时,充分发挥其优异的控裂和变形能力,本文采用极限拉应变与ECC接近且粘结性能优良的高强不锈钢绞线网(high-strength stainless steel strand mesh, HSSM)增强ECC,并进行HSSM增强ECC板受弯性能的数值分析。采用ABAQUS软件,考虑钢绞线与ECC之间的粘结–滑移作用,建立有限元模型模拟ECC在弯曲过程中的非线性行为。此外,通过参数分析探明了钢绞线配筋率、板尺寸和ECC材料参数等变量对板抗弯性能的影响。结果表明:增加配筋率、板的截面高度、ECC的开裂强度和极限抗拉强度,可显著提高了板的抗弯刚度和承载能力,但延性有所降低;提高ECC的抗压强度,可有效提高板的延性,同时板的承载力和刚度也有小幅提升。
In order to effectively improve the strength of engineered cementitious composite (ECC) while giving full play to its good crack control and deformation capabilities, this paper uses high-strength stainless steel strand mesh (HSSM) with ultimate tensile strain close to that of ECC and good bond performance to reinforce ECC, and conducts numerical analysis on the flexural performance of HSSM-reinforced ECC slabs. Using the ABAQUS software, a finite element model was established to simulate the nonlinear behavior of ECC under bending, considering the bond-slip interactions between the steel strands and ECC. Additionally, parametric analysis was carried out to investigate the influence of variables such as steel strand reinforcement ratio, slab dimensions, and material properties of ECC on the flexural performance of the slabs. The results indicate that increasing the reinforcement ratio, the cross-sectional height of the slab, the cracking strength and ultimate tensile strength of ECC can significantly enhance the flexural stiffness and load-bearing capacity of the slab, but its ductility is reduced. Increasing the compressive strength of ECC can effectively improve the ductility of the slab, while also slightly enhancing its load-bearing capacity and stiffness.
[1] | Li, V.C. and Leung, C.K.Y. (1992) Steady‐state and Multiple Cracking of Short Random Fiber Composites. Journal of Engineering Mechanics, 118, 2246-2264. https://doi.org/10.1061/(asce)0733-9399(1992)118:11(2246) |
[2] | 徐世烺, 李贺东. 超高韧性水泥基复合材料研究进展及其工程应用[J]. 土木工程学报, 2008(6): 45-60. |
[3] | 薛会青, 邓宗才. HRECC梁弯曲性能的试验研究与理论分析[J]. 土木工程学报, 2013, 46(4): 10-17. |
[4] | 徐世烺, 李庆华, 李贺东. 碳纤维编织网增强超高韧性水泥基复合材料弯曲性能的试验研究[J]. 土木工程学报, 2007(12): 69-76. |
[5] | Li, B., Xiong, H., Jiang, J. and Dou, X. (2019) Tensile Behavior of Basalt Textile Grid Reinforced Engineering Cementitious Composite. Composites Part B: Engineering, 156, 185-200. https://doi.org/10.1016/j.compositesb.2018.08.059 |
[6] | Wang, X., Yang, G., Qian, W., Li, K. and Zhu, J. (2021) Tensile Behavior of High-Strength Stainless Steel Wire Rope (HSSSWR)-Reinforced ECC. International Journal of Concrete Structures and Materials, 15, Article No. 43. https://doi.org/10.1186/s40069-021-00480-x |
[7] | 王新玲, 陈永杰, 钱文文, 等. 高强不锈钢绞线网增强工程水泥基复合材料弯曲性能试验[J]. 复合材料学报, 2021, 38(4): 1292-1301. |
[8] | Zhu, J., Liu, Y., Li, Z., Zou, X., Li, K. and Fan, J. (2023) Bond Behavior between High-Strength Steel Wire Meshes and ECC: Experimental Study and Analytical Modelling. Engineering Structures, 287, Article 116115. https://doi.org/10.1016/j.engstruct.2023.116115 |
[9] | Wei, Y., Li, K., Xu, C., Wang, L., Fan, J. and Zhu, J. (2024) The Effect of Strain Lag for the Flexural Enhancement of RC Beams Strengthened by HMRE under Secondary Load. Engineering Structures, 316, Article 118612. https://doi.org/10.1016/j.engstruct.2024.118612 |
[10] | 聂建国, 王宇航. ABAQUS中混凝土本构模型用于模拟结构静力行为的比较研究[J]. 工程力学, 2013, 30(4): 59-67+82. |
[11] | 刘伟康. ECC受压和受拉性能及本构模型研究[D]: [硕士学位论文]. 郑州: 郑州大学, 2018. |