|
MMP-9在中枢神经系统感染性疾病诊断中的研究进展
|
Abstract:
中枢神经系统感染性疾病是病原微生物侵犯中枢神经系统(central nervous system, CNS)的实质、背膜及血管等引起的急性或慢性炎症(或非炎症性)疾病,这些病原微生物包括病毒、细菌、真菌、螺旋体、寄生虫、朊蛋白等。多种物质参与中枢神经系统感染性疾病的发生及发展。基质金属蛋白酶(matrix metalloproteinases, MMPs)是一个包括20多种蛋白在内的大家族。它参与胚胎发育、前体细胞或干细胞动员、创面重塑和愈合等生理反应,以及炎症、肿瘤进展和转移、血管内皮细胞损伤等病理反应。其中基质金属蛋白酶-9 (matrix metalloproteinase-9, MMP-9)在中枢神经系统疾病中发挥着重要的作用,无论是中枢神经系统感染性疾病还是肿瘤,目前的研究线索指向MMP-9与血脑屏障(blood brain barrier, BBB)的破坏相关。本文将就其研究现状进行综述和讨论。
Infectious diseases of the central nervous system are acute or chronic inflammatory (or non- inflammatory) diseases caused by pathogenic microorganisms invading the substance, dorsal membrane and blood vessels of the central nervous system (CNS). These pathogenic microorganisms include viruses, bacteria, fungi, spirochetes, parasites, prions, etc. Many substances are involved in the occurrence and development of central nervous system infectious diseases. Matrix metalloproteinases (MMPs) are a large family that includes over 20 proteins. It participates in physiological reactions such as embryonic development, mobilization of precursor cells or stem cells, wound remodeling and healing, as well as pathological reactions such as inflammation, tumor progression and metastasis, and damage to vascular endothelial cells. Matrix metalloproteinase-9 (MMP-9) plays an important role in central nervous system diseases. Whether it is central nervous system infectious diseases or tumors, the current research clues point to the relationship between MMP-9 and the destruction of blood brain barrier (BBB). This article will review and discuss the current research status.
[1] | He, L., Kang, Q., Chan, K.I., Zhang, Y., Zhong, Z. and Tan, W. (2023) The Immunomodulatory Role of Matrix Metal-loproteinases in Colitis-Associated Cancer. Frontiers in Immunology, 13, Article 1093990. https://doi.org/10.3389/fimmu.2022.1093990 |
[2] | Beroun, A., Mitra, S., Michaluk, P., Pijet, B., Stefaniuk, M. and Kaczmarek, L. (2019) MMPs in Learning and Memory and Neuropsychiatric Disorders. Cellular and Molecular Life Sciences, 76, 3207-3228. https://doi.org/10.1007/s00018-019-03180-8 |
[3] | Son, J., Parveen, S., MacPherson, D., Marciano, Y., Huang, R.H. and Ulijn, R.V. (2023) MMP-Responsive Nanomaterials. Biomaterials Science, 11, 6457-6479. https://doi.org/10.1039/d3bm00840a |
[4] | Jabłońska-Trypuć, A., Matejczyk, M. and Rosochacki, S. (2016) Matrix Metalloproteinases (MMPs), the Main Extracellular Matrix (ECM) Enzymes in Collagen Degradation, as a Target for Anticancer Drugs. Journal of Enzyme Inhibition and Medicinal Chemistry, 31, 177-183. https://doi.org/10.3109/14756366.2016.1161620 |
[5] | Bassiouni, W., Ali, M.A.M. and Schulz, R. (2021) Multifunctional Intracellular Matrix Metalloproteinases: Implications in Disease. The FEBS Journal, 288, 7162-7182. https://doi.org/10.1111/febs.15701 |
[6] | Al-Otaibi, A.M., Al-Gebaly, A.S., Almeer, R., Albasher, G., Al-Qahtani, W.S. and Abdel Moneim, A.E. (2022) Melatonin Pre-Treated Bone Marrow Derived-Mesenchymal Stem Cells Prompt Wound Healing in Rat Models. Biomedicine & Pharmacotherapy, 145, Article ID: 112473. https://doi.org/10.1016/j.biopha.2021.112473 |
[7] | Kumar, G.B., Nair, B.G., Perry, J.J.P. and Martin, D.B.C. (2019) Recent Insights into Natural Product Inhibitors of Matrix Metalloproteinases. MedChemComm, 10, 2024-2037. https://doi.org/10.1039/c9md00165d |
[8] | Scannevin, R.H., Alexander, R., Haarlander, T.M., Burke, S.L., Singer, M., Huo, C., et al. (2017) Discovery of a Highly Selective Chemical Inhibitor of Matrix Metalloproteinase-9 (MMP-9) That Allosterically Inhibits Zymogen Activation. Journal of Biological Chemistry, 292, 17963-17974. https://doi.org/10.1074/jbc.m117.806075 |
[9] | Barkhash, A.V., Yurchenko, A.A., Yudin, N.S., Ignatieva, E.V., Kozlova, I.V., Borishchuk, I.A., et al. (2018) A Matrix Metalloproteinase 9 (MMP9) Gene Single Nucleotide Polymorphism Is Associated with Predisposition to Tick-Borne Encephalitis Virus-Induced Severe Central Nervous System Disease. Ticks and Tick-Borne Diseases, 9, 763-767. https://doi.org/10.1016/j.ttbdis.2018.02.010 |
[10] | Xu, R., Chen, M., Liang, W., Chen, Y. and Guo, M. (2020) Zinc Deficiency Aggravation of ROS and Inflammatory Injury Leading to Renal Fibrosis in Mice. Biological Trace Element Research, 199, 622-632. https://doi.org/10.1007/s12011-020-02184-x |
[11] | Vandooren, J., Van den Steen, P.E. and Opdenakker, G. (2013) Biochemistry and Molecular Biology of Gelatinase B or Matrix Metalloproteinase-9 (MMP-9): The Next Decade. Critical Reviews in Biochemistry and Molecular Biology, 48, 222-272. https://doi.org/10.3109/10409238.2013.770819 |
[12] | Singh, D., Srivastava, S.K., Chaudhuri, T.K. and Upadhyay, G. (2015) Multifaceted Role of Matrix Metalloproteinases (MMPs). Frontiers in Molecular Biosciences, 2, Article 19. https://doi.org/10.3389/fmolb.2015.00019 |
[13] | Hey, S., Ratt, A. and Linder, S. (2022) There and Back Again: Intracellular Trafficking, Release and Recycling of Matrix Metalloproteinases. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1869, Article 119189. https://doi.org/10.1016/j.bbamcr.2021.119189 |
[14] | Lewin, S., Hunt, S. and Lambert, D.W. (2020) Extracellular Vesicles and the Extracellular Matrix: A New Paradigm or Old News? Biochemical Society Transactions, 48, 2335-2345. https://doi.org/10.1042/bst20200717 |
[15] | Hansen, N.U.B., Genovese, F., Leeming, D.J. and Karsdal, M.A. (2015) The Importance of Extracellular Matrix for Cell Function and in Vivo Likeness. Experimental and Molecular Pathology, 98, 286-294. https://doi.org/10.1016/j.yexmp.2015.01.006 |
[16] | Ingber, D.E. (2006) Mechanical Control of Tissue Morphogenesis during Embryological Development. The International Journal of Developmental Biology, 50, 255-266. https://doi.org/10.1387/ijdb.052044di |
[17] | Theocharis, A.D., Skandalis, S.S., Gialeli, C. and Karamanos, N.K. (2016) Extracellular Matrix Structure. Advanced Drug Delivery Reviews, 97, 4-27. https://doi.org/10.1016/j.addr.2015.11.001 |
[18] | Wang, X. and Khalil, R.A. (2018) Matrix Metalloproteinases, Vascular Remodeling, and Vascular Disease. Advances in Pharmacology, 81, 241-330. https://doi.org/10.1016/bs.apha.2017.08.002 |
[19] | Liu, M., Li, A. and Xiu, R. (2018) Research Progress on Matrix Metall Oproteinases. Chinese Journal of Pathophysiology, 34, 1914-1920. https://doi.org/10.3969/j.issn.1000-4718.2018.10.029 |
[20] | Wang, T., Zhang, Y., Bai, J., Xue, Y. and Peng, Q. (2021) MMP1 and MMP9 Are Potential Prognostic Biomarkers and Targets for Uveal Melanoma. BMC Cancer, 21, 1068. https://doi.org/10.1186/s12885-021-08788-3 |
[21] | Han, X., Boyd, P.J., Colgan, S., Madri, J.A. and Haas, T.L. (2003) Transcriptional Up-Regulation of Endothelial Cell Matrix Metalloproteinase-2 in Response to Extracellular Cues Involves Gata-2. Journal of Biological Chemistry, 278, 47785-47791. https://doi.org/10.1074/jbc.m309482200 |
[22] | Itoh, Y. (2015) Membrane-Type Matrix Metalloproteinases: Their Functions and Regulations. Matrix Biology, 44, 207-223. https://doi.org/10.1016/j.matbio.2015.03.004 |
[23] | Nagel, H., Laskawi, R., Wahlers, A. and Hemmerlein, B. (2004) Expression of Matrix Metalloproteinases MMP‐2, MMP‐9 and Their Tissue Inhibitors TIMP‐1, ‐2, and ‐3 in Benign and Malignant Tumours of the Salivary Gland. Histopathology, 44, 222-231. https://doi.org/10.1111/j.0309-0167.2004.01814.x |
[24] | Martin, R.M., Zimmermann, L.L., Huynh, M. and Polage, C.R. (2018) Diagnostic Approach to Health Care-and Device-Associated Central Nervous System Infections. Journal of Clinical Microbiology, 56. https://doi.org/10.1128/jcm.00861-18 |
[25] | Overturf, G.D. (2005) Defining Bacterial Meningitis and Other Infections of the Central Nervous System. Pediatric Critical Care Medicine, 6, S14-S18. https://doi.org/10.1097/01.pcc.0000161933.42822.86 |
[26] | Sanchez-Cano, F., Hernández-Kelly, L.C. and Ortega, A. (2021) The Blood-Brain Barrier: Much More than a Selective Access to the Brain. Neurotoxicity Research, 39, 2154-2174. https://doi.org/10.1007/s12640-021-00431-0 |
[27] | Rempe, R.G., Hartz, A.M. and Bauer, B. (2016) Matrix Metalloproteinases in the Brain and Blood-Brain Barrier: Versatile Breakers and Makers. Journal of Cerebral Blood Flow & Metabolism, 36, 1481-1507. https://doi.org/10.1177/0271678x16655551 |
[28] | Myers, J.S., Hare, J. and Sang, Q.A. (2017) A Simple Adaptable Blood-Brain Barrier Cell Model for Screening Matrix Metalloproteinase Inhibitor Functionality. In: Galea, C., Ed., Matrix Metalloproteases, Springer, 287-296. https://doi.org/10.1007/978-1-4939-6863-3_16 |
[29] | Bruschi, F. and Pinto, B. (2013) The Significance of Matrix Metalloproteinases in Parasitic Infections Involving the Central Nervous System. Pathogens, 2, 105-129. https://doi.org/10.3390/pathogens2010105 |
[30] | Roine, I., Pelkonen, T., Lauhio, A., Lappalainen, M., Cruzeiro, M.L., Bernardino, L., et al. (2015) Changes in MMP-9 and TIMP-1 Concentrations in Cerebrospinal Fluid after 1 Week of Treatment of Childhood Bacterial Meningitis. Journal of Clinical Microbiology, 53, 2340-2342. https://doi.org/10.1128/jcm.00714-15 |
[31] | Aung, L.L., Mouradian, M.M., Dhib-Jalbut, S. and Balashov, K.E. (2015) MMP-9 Expression Is Increased in B Lymphocytes during Multiple Sclerosis Exacerbation and Is Regulated by MicroRNA-320a. Journal of Neuroimmunology, 278, 185-189. https://doi.org/10.1016/j.jneuroim.2014.11.004 |
[32] | Baranger, K., Marchalant, Y., Bonnet, A.E., Crouzin, N., Carrete, A., Paumier, J., et al. (2015) MT5-MMP Is a New Pro-Amyloidogenic Proteinase That Promotes Amyloid Pathology and Cognitive Decline in a Transgenic Mouse Model of Alzheimer’s Disease. Cellular and Molecular Life Sciences, 73, 217-236. https://doi.org/10.1007/s00018-015-1992-1 |
[33] | Kaminari, A., Giannakas, N., Tzinia, A. and Tsilibary, E.C. (2017) Overexpression of Matrix Metalloproteinase-9 (MMP-9) Rescues Insulin-Mediated Impairment in the 5XFAD Model of Alzheimer’s Disease. Scientific Reports, 7, Article No. 683. https://doi.org/10.1038/s41598-017-00794-5 |
[34] | 李军霞, 赵青, 何红彦, 等. 基质金属蛋白酶-9与血脑屏障和结核性脑膜炎[J]. 中国感染与化疗杂志, 2017, 17(4): 463-467. |
[35] | 杨泽伟, 冯飞, 杨颖, 等. 脑脊液ESAT-6、ADA、INF-γ、MMP-9检测在结核性脑膜炎诊断及转归中的应用价值[J]. 山东医药, 2018, 58(18): 56-58. |
[36] | Lee, K.Y., Kim, E.H., Yang, W.S., Ryu, H., Cho, S., Lee, B.I., et al. (2004) Persistent Increase of Matrix Metalloproteinases in Cerebrospinal Fluid of Tuberculous Meningitis. Journal of the Neurological Sciences, 220, 73-78. https://doi.org/10.1016/j.jns.2004.02.008 |
[37] | Mailankody, S., Dangeti, G.V., Soundravally, R., Joseph, N.M., Mandal, J., Dutta, T.K., et al. (2017) Cerebrospinal Fluid Matrix Metalloproteinase 9 Levels, Blood-Brain Barrier Permeability, and Treatment Outcome in Tuberculous Meningitis. PLOS ONE, 12, e0181262. https://doi.org/10.1371/journal.pone.0181262 |
[38] | Majeed, S., Radotra, B.D. and Sharma, S. (2016) Adjunctive Role of MMP‐9 Inhibition along with Conventional Anti‐tubercular Drugs against Experimental Tuberculous Meningitis. International Journal of Experimental Pathology, 97, 230-237. https://doi.org/10.1111/iep.12191 |
[39] | 周瑜, 曾艳平, 周琴, 等. 卡托普利对单纯疱疹病毒性脑炎小鼠基质金属蛋白酶-9的表达及神经功能转归的影响[J]. 临床神经病学杂志, 2016, 29(1): 42-45. |
[40] | Kohil, A., Jemmieh, S., Smatti, M.K. and Yassine, H.M. (2021) Viral Meningitis: An Overview. Archives of Virology, 166, 335-345. https://doi.org/10.1007/s00705-020-04891-1 |
[41] | 缪梓萍, 严菊英, 孙逸, 等. 浙江省2002-2018年病毒性脑膜炎病原学与分子流行病学特征[J]. 中华流行病学杂志, 2020, 41(4): 562-566. |
[42] | 柳旎, 李沫民, 韩旭. 儿童肠道病毒性脑炎的临床特点及预后分析[J]. 热带医学杂志, 2021, 21(1): 75-78. |
[43] | 周瑜, 曾艳平, 罗瑛, 等. MMP-9及MCP-1在单纯疱疹病毒性脑炎患者脑脊液中的表达及意义[J]. 临床急诊杂志, 2020, 21(3): 188-191. |
[44] | Wright, W.F., Pinto, C.N., Palisoc, K. and Baghli, S. (2019) Viral (Aseptic) Meningitis: A Review. Journal of the Neurological Sciences, 398, 176-183. https://doi.org/10.1016/j.jns.2019.01.050 |
[45] | Khuth, S., Akaoka, H., Pagenstecher, A., Verlaeten, O., Belin, M., Giraudon, P., et al. (2001) Morbillivirus Infection of the Mouse Central Nervous System Induces Region-Specific Upregulation of MMPs and TIMPs Correlated to Inflammatory Cytokine Expression. Journal of Virology, 75, 8268-8282. https://doi.org/10.1128/jvi.75.17.8268-8282.2001 |
[46] | Yau, B., Hunt, N.H., Mitchell, A.J. and Too, L.K. (2018) Blood-Brain Barrier Pathology and CNS Outcomes in Streptococcus pneumoniae Meningitis. International Journal of Molecular Sciences, 19, Article 3555. https://doi.org/10.3390/ijms19113555 |
[47] | Liechti, F.D., Grandgirard, D. and Leib, S.L. (2015) Bacterial Meningitis: Insights into Pathogenesis and Evaluation of New Treatment Options: A Perspective from Experimental Studies. Future Microbiology, 10, 1195-1213. https://doi.org/10.2217/fmb.15.43 |
[48] | 曹芯蕊, 贾凯翔, 方仁东. 链球菌突破血脑屏障的作用机制研究进展[J]. 微生物学通报, 2022, 49(12): 5311-5320. |
[49] | 李玉美, 余资江, 罗时鹏, 等. 丹参酮IIA对细菌性脑膜炎大鼠海马区损伤的作用及机制[J]. 贵州医科大学学报, 2023, 48(11): 1343-1349, 1356. |
[50] | Kim, Y., Cho, A.Y., Kim, H.C., Ryu, D., Jo, S.A. and Jung, Y. (2022) Effects of Natural Polyphenols on Oxidative Stress-Mediated Blood-Brain Barrier Dysfunction. Antioxidants, 11, Article 197. https://doi.org/10.3390/antiox11020197 |
[51] | 张世玲, 宋春兰, 成怡冰, 等. 儿童细菌性脑膜炎与病毒性脑炎临床及实验室检查特点[J]. 中华医院感染学杂志, 2021, 31(6): 924-928. |
[52] | Roine, I., Pelkonen, T., Bernardino, L., Lauhio, A., Tervahartiala, T., Lappalainen, M., et al. (2014) Predictive Value of Cerebrospinal Fluid Matrix Metalloproteinase-9 and Tissue Inhibitor of Metalloproteinase-1 Concentrations in Childhood Bacterial Meningitis. Pediatric Infectious Disease Journal, 33, 675-679. https://doi.org/10.1097/inf.0000000000000249 |
[53] | Savonius, O., Roine, I., Alassiri, S., Tervahartiala, T., Helve, O., Fernández, J., et al. (2019) The Potential Role of Matrix Metalloproteinases 8 and 9 and Myeloperoxidase in Predicting Outcomes of Bacterial Meningitis of Childhood. Mediators of Inflammation, 2019, Article ID: 7436932. https://doi.org/10.1155/2019/7436932 |