全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

抑制风力发电波动的氢混合储能系统分段动态控制策略
Segmented Dynamic Control Strategy for Hydrogen Hybrid Energy Storage System to Suppress Fluctuations in Wind Power Generation

DOI: 10.12677/jee.2025.131003, PP. 18-32

Keywords: 混合储能,氢储能,储能控制策略,波动抑制
Hybrid Energy Storage System
, Hydrogen Energy Storage, Energy Storage Control Strategy, Volatility Suppression

Full-Text   Cite this paper   Add to My Lib

Abstract:

氢能作为一种高效且清洁的能源,在用于储能时相较于传统化学蓄电池具有显著的容量优势。为抑制风力发电波动,文章建立了由超级电容、蓄电池、氢燃料电池和氢电解槽组成的氢混合储能系统(Hybrid Energy Storage System, HESS),并针对此混合储能系统提出了一种基于荷电状态(State of Charge, SOC)的分段动态控制策略。该策略首先通过低通滤波算法将波动功率分解为高频、中频和低频部分,并由不同储能单元分别进行抑制。在此基础上,分段动态控制策略在混合储能系统处于正常充放电区间时,采用SOC自适应功率分配,以保持各储能单元的SOC处于相近水平;而当混合储能系统可用补偿容量处于过高或过低的非正常充放电区间时,则应用极限状态下SOC功率分配策略,以延长波动抑制时间,减少混合储能系统停机时长。最后基于MATLAB/Simulink搭建了风力发电系统和混合储能系统仿真模型,验证了所提分段动态控制策略的可行性和有效性。
Hydrogen energy, as an efficient and clean energy source, has significant capacity advantages over traditional chemical batteries when used for energy storage. In order to suppress the fluctuation of wind power generation, this paper establishes a Hybrid Energy Storage System (HESS) consisting of a supercapacitor, battery, hydrogen fuel cell and hydrogen electrolyser, and proposes a segmented dynamic control strategy based on State of Charge (SOC) for this hybrid energy storage system. The strategy firstly decomposes the fluctuating power into high-frequency, medium-frequency and low-frequency parts through a low-pass filtering algorithm, and suppresses them by different energy storage units respectively. On this basis, the segmented dynamic control strategy uses SOC adaptive power allocation to keep the SOC of each storage unit at a similar level when the hybrid energy storage system is in the normal charging/discharging interval; and applies the SOC power allocation strategy in the limit state when the available compensation capacity of the hybrid energy storage system is in the non-normal charging/discharging interval which is either too high or too low to prolong the fluctuation suppression time and to reduce the downtime of the hybrid energy storage system. Finally, a simulation model of a wind power generation system and hybrid energy storage system is constructed based on MATLAB/Simulink to verify the feasibility and effectiveness of the proposed segmented dynamic control strategy.

References

[1]  李政, 李伟起, 张忠伟, 等. “双碳”目标下我国电力系统灵活性资源发展策略研究[J]. 中国工程科学, 2024, 26(4): 108-120.
[2]  赵冉. 构建以新能源为主体的新型电力系统[N]. 中国电力报, 2021-04-01(02).
[3]  鲁宗相, 李海波, 乔颖. 含高比例可再生能源电力系统灵活性规划及挑战[J]. 电力系统自动化, 2016, 40(13): 147-158.
[4]  胡博, 谢开贵, 邵常政, 等. 双碳目标下新型电力系统风险评述: 特征、指标及评估方法[J]. 电力系统自动化, 2023, 47(5): 1-15
[5]  谭显东, 刘俊, 徐志成, 等. “双碳”目标下“十四五”电力供需形势[J]. 中国电力, 2021, 54(5): 1-6.
[6]  任大伟, 侯金鸣, 肖晋宇, 等. 支撑双碳目标的新型储能发展潜力及路径研究[J]. 中国电力, 2023, 56(8): 17-25.
[7]  孙伟卿, 王思成, 刘宇宸. 支撑新型电力系统的储能技术综述与政策解读[J]. 自动化仪表, 2022, 43(12): 1-6, 18.
[8]  王意东, 许苏予, 何太碧, 等. 中国氢能及燃料电池产业政策研究及启示[J]. 天然气工业, 2024, 44(5): 136-145.
[9]  郭东泽, 张继红, 王庆宇, 等. 平抑风电出力波动的混合储能功率分配策略[J]. 储能科学与技术, 2024, 13(5): 1564-1573.
[10]  李凡, 张建成, 朱立刚. 平抑光伏功率波动的混合储能系统控制方法[J]. 电源技术, 2016, 40(2): 397-399, 472.
[11]  付菊霞, 陈洁, 邓浩, 等. 平抑风电波动的混合储能系统控制策略[J]. 电测与仪表, 2020, 57(5): 94-100.
[12]  徐聪, 高强, 王羔则, 等. 平抑风电波动的混合储能系统控制方法[J]. 电源技术, 2020, 44(10): 1534-1537.
[13]  李志强, 李赛, 王凡凯. 平抑风电波动的混合储能系统自适应控制策略[J]. 现代电力, 2020, 37(6): 646-653.
[14]  孔令国, 蔡国伟, 陈冲, 等. 基于氢储能的主动型永磁直驱风电机组建模与并网控制[J]. 电工技术学报, 2017, 32(18): 276-285.
[15]  聂聪颖, 沈小军, 吕洪, 等. 并网型风电场氢超混合储能容量配置及控制策略研究[J]. 智慧电力, 2020, 48(9): 1-8.
[16]  袁铁江, 郭建华, 杨紫娟, 等. 平抑风电波动的电-氢混合储能容量优化配置[J]. 中国电机工程学报, 2024, 44(4): 1397-1406.
[17]  王激华, 叶夏明, 秦如意, 等. 基于指数型下垂控制的氢电混合储能微网协调控制策略研究[J]. 中国电力, 2023, 56(7): 43-53.
[18]  Szumanowski, A. and Chang, Y.H. (2008) Battery Management System Based on Battery Nonlinear Dynamics Modeling. IEEE Transactions on Vehicular Technology, 57, 1425-1432.
https://doi.org/10.1109/tvt.2007.912176
[19]  孔令国. 风光氢综合能源系统优化配置与协调控制策略研究[D]: [博士学位论文]. 北京: 华北电力大学, 2017.
[20]  孔令国, 于家敏, 蔡国伟, 等. 基于模型预测控制的离网电氢耦合系统功率调控[J]. 中国电机工程学报, 2021, 41(9): 3139-3149.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133