全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

青光眼发病机制与治疗研究进展
Advances in Glaucoma Pathogenesis and Treatment

DOI: 10.12677/jcpm.2025.42175, PP. 279-286

Keywords: 青光眼,发病机制,治疗
Glaucoma
, Pathogenesis, Treatment

Full-Text   Cite this paper   Add to My Lib

Abstract:

青光眼作为全球不可逆视力丧失的主要原因之一,在临床实践和研究中引起了广泛的关注,而常规的治疗方法并不能完全治愈青光眼,因此寻求新的青光眼治疗手段显得尤为重要。该综述旨在系统回顾青光眼的发病机制并对其新进展进行分析,进一步完善青光眼的发病机制,从而为青光眼的治疗提供新思路。
Glaucoma, as one of the major causes of irreversible vision loss worldwide, has attracted widespread attention in clinical practice and research, and as conventional treatments do not completely cure glaucoma, the search for new glaucoma treatments is of particular importance. The aim of this review is to systematically review the pathogenesis of glaucoma and analyze its new developments to further improve the pathogenesis of glaucoma, thus providing new ideas for the treatment of glaucoma.

References

[1]  Quigley, H.A. (2006) The Number of People with Glaucoma Worldwide in 2010 and 2020. British Journal of Ophthalmology, 90, 262-267.
https://doi.org/10.1136/bjo.2005.081224
[2]  Tham, Y., Li, X., Wong, T.Y., Quigley, H.A., Aung, T. and Cheng, C. (2014) Global Prevalence of Glaucoma and Projections of Glaucoma Burden through 2040: A Systematic Review and Meta-Analysis. Ophthalmology, 121, 2081-2090.
https://doi.org/10.1016/j.ophtha.2014.05.013
[3]  Shan, S., Wu, J., Cao, J., Feng, Y., Zhou, J., Luo, Z., et al. (2024) Global Incidence and Risk Factors for Glaucoma: A Systematic Review and Meta-Analysis of Prospective Studies. Journal of Global Health, 14, Article ID: 04252
https://doi.org/10.7189/jogh.14.04252
[4]  Stein, J.D., Khawaja, A.P. and Weizer, J.S. (2021) Glaucoma in Adults—Screening, Diagnosis, and Management: A Review. JAMA, 325, 164-174.
https://doi.org/10.1001/jama.2020.21899
[5]  Jindal, V. (2013) Glaucoma: An Extension of Various Chronic Neurodegenerative Disorders. Molecular Neurobiology, 48, 186-189.
https://doi.org/10.1007/s12035-013-8416-8
[6]  Wareham, L.K., Liddelow, S.A., Temple, S., Benowitz, L.I., Di Polo, A., Wellington, C., et al. (2022) Solving Neurodegeneration: Common Mechanisms and Strategies for New Treatments. Molecular Neurodegeneration, 17, Article No. 23.
https://doi.org/10.1186/s13024-022-00524-0
[7]  Carreon, T., van der Merwe, E., Fellman, R.L., Johnstone, M. and Bhattacharya, S.K. (2017) Aqueous Outflow—A Continuum from Trabecular Meshwork to Episcleral Veins. Progress in Retinal and Eye Research, 57, 108-133.
https://doi.org/10.1016/j.preteyeres.2016.12.004
[8]  Last, J.A., Pan, T., Ding, Y., Reilly, C.M., Keller, K., Acott, T.S., et al. (2011) Elastic Modulus Determination of Normal and Glaucomatous Human Trabecular Meshwork. Investigative Opthalmology & Visual Science, 52, 2147-2152.
https://doi.org/10.1167/iovs.10-6342
[9]  Munaron, L. (2011) Shuffling the Cards in Signal Transduction: Calcium, Arachidonic Acid and Mechanosensitivity. World Journal of Biological Chemistry, 2, 59-66.
https://doi.org/10.4331/wjbc.v2.i4.59
[10]  Tamm, E.R. (2009) The Trabecular Meshwork Outflow Pathways: Structural and Functional Aspects. Experimental Eye Research, 88, 648-655.
https://doi.org/10.1016/j.exer.2009.02.007
[11]  Morozumi, W., Aoshima, K., Inagaki, S., Iwata, Y., Nakamura, S., Hara, H., et al. (2021) Piezo 1 Is Involved in Intraocular Pressure Regulation. Journal of Pharmacological Sciences, 147, 211-221.
https://doi.org/10.1016/j.jphs.2021.06.005
[12]  Faralli, J.A., Filla, M.S. and Peters, D.M. (2019) Role of Fibronectin in Primary Open Angle Glaucoma. Cells, 8, Article 1518.
https://doi.org/10.3390/cells8121518
[13]  Quigley, H.A. and Cone, F.E. (2013) Development of Diagnostic and Treatment Strategies for Glaucoma through Understanding and Modification of Scleral and Lamina Cribrosa Connective Tissue. Cell and Tissue Research, 353, 231-244.
https://doi.org/10.1007/s00441-013-1603-0
[14]  Nakazawa, T. and Fukuchi, T. (2020) What Is Glaucomatous Optic Neuropathy? Japanese Journal of Ophthalmology, 64, 243-249.
https://doi.org/10.1007/s10384-020-00736-1
[15]  Alarcon-Martinez, L., Shiga, Y., Villafranca-Baughman, D., Cueva Vargas, J.L., Vidal Paredes, I.A., Quintero, H., et al. (2023) Neurovascular Dysfunction in Glaucoma. Progress in Retinal and Eye Research, 97, Article ID: 101217.
https://doi.org/10.1016/j.preteyeres.2023.101217
[16]  Casson, R.J., Chidlow, G., Crowston, J.G., Williams, P.A. and Wood, J.P.M. (2021) Retinal Energy Metabolism in Health and Glaucoma. Progress in Retinal and Eye Research, 81, Article ID: 100881.
https://doi.org/10.1016/j.preteyeres.2020.100881
[17]  Wareham, L.K. and Calkins, D.J. (2020) The Neurovascular Unit in Glaucomatous Neurodegeneration. Frontiers in Cell and Developmental Biology, 8, Article 452.
https://doi.org/10.3389/fcell.2020.00452
[18]  Pillunat, K.R., Ventzke, S., Spoerl, E., Furashova, O., Stodtmeister, R. and Pillunat, L.E. (2014) Central Retinal Venous Pulsation Pressure in Different Stages of Primary Open-Angle Glaucoma. British Journal of Ophthalmology, 98, 1374-1378.
https://doi.org/10.1136/bjophthalmol-2014-305126
[19]  Leeman, M. and Kestelyn, P. (2019) Glaucoma and Blood Pressure. Hypertension, 73, 944-950.
https://doi.org/10.1161/hypertensionaha.118.11507
[20]  Sen, S., Saxena, R., Tripathi, M., Vibha, D. and Dhiman, R. (2020) Neurodegeneration in Alzheimer’s Disease and Glaucoma: Overlaps and Missing Links. Eye, 34, 1546-1553.
https://doi.org/10.1038/s41433-020-0836-x
[21]  Asefa, N.G., Neustaeter, A., Jansonius, N.M. and Snieder, H. (2019) Heritability of Glaucoma and Glaucoma-Related Endophenotypes: Systematic Review and Meta-Analysis. Survey of Ophthalmology, 64, 835-851.
https://doi.org/10.1016/j.survophthal.2019.06.002
[22]  Zukerman, R., Harris, A., Oddone, F., Siesky, B., Verticchio Vercellin, A. and Ciulla, T.A. (2021) Glaucoma Heritability: Molecular Mechanisms of Disease. Genes, 12, Article 1135.
https://doi.org/10.3390/genes12081135
[23]  D’Esposito, F., Gagliano, C., Bloom, P., Cordeiro, M., Avitabile, A., Gagliano, G., et al. (2024) Epigenetics in Glaucoma. Medicina, 60, Article 905.
https://doi.org/10.3390/medicina60060905
[24]  Alkozi, H.A., Franco, R. and Pintor, J.J. (2017) Epigenetics in the Eye: An Overview of the Most Relevant Ocular Diseases. Frontiers in Genetics, 8, Article 144.
https://doi.org/10.3389/fgene.2017.00144
[25]  McDonnell, F., O’Brien, C. and Wallace, D. (2014) The Role of Epigenetics in the Fibrotic Processes Associated with Glaucoma. Journal of Ophthalmology, 2014, Article ID: 750459.
https://doi.org/10.1155/2014/750459
[26]  Geyer, O. and Levo, Y. (2020) Glaucoma Is an Autoimmune Disease. Autoimmunity Reviews, 19, Article ID: 102535.
https://doi.org/10.1016/j.autrev.2020.102535
[27]  Wang, L. and Wei, X. (2021) T Cell-Mediated Autoimmunity in Glaucoma Neurodegeneration. Frontiers in Immunology, 12, Article 803485.
https://doi.org/10.3389/fimmu.2021.803485
[28]  Wei, X., Cho, K., Thee, E.F., Jager, M.J. and Chen, D.F. (2018) Neuroinflammation and Microglia in Glaucoma: Time for a Paradigm Shift. Journal of Neuroscience Research, 97, 70-76.
https://doi.org/10.1002/jnr.24256
[29]  Tezel, G. (2022) Molecular Regulation of Neuroinflammation in Glaucoma: Current Knowledge and the Ongoing Search for New Treatment Targets. Progress in Retinal and Eye Research, 87, Article ID: 100998.
https://doi.org/10.1016/j.preteyeres.2021.100998
[30]  Takeda, A., Shinozaki, Y., Kashiwagi, K., Ohno, N., Eto, K., Wake, H., et al. (2018) Microglia Mediate Non-Cell-Autonomous Cell Death of Retinal Ganglion Cells. Glia, 66, 2366-2384.
https://doi.org/10.1002/glia.23475
[31]  Harada, T., Harada, C., Nakamura, K., Quah, H.A., Okumura, A., Namekata, K., et al. (2007) The Potential Role of Glutamate Transporters in the Pathogenesis of Normal Tension Glaucoma. Journal of Clinical Investigation, 117, 1763-1770.
https://doi.org/10.1172/jci30178
[32]  Ji, M., Miao, Y., Dong, L., Chen, J., Mo, X., Jiang, S., et al. (2012) Group I mGluR-Mediated Inhibition of Kir Channels Contributes to Retinal Müller Cell Gliosis in a Rat Chronic Ocular Hypertension Model. The Journal of Neuroscience, 32, 12744-12755.
https://doi.org/10.1523/jneurosci.1291-12.2012
[33]  Shinozaki, Y. and Koizumi, S. (2021) Potential Roles of Astrocytes and Müller Cells in the Pathogenesis of Glaucoma. Journal of Pharmacological Sciences, 145, 262-267.
https://doi.org/10.1016/j.jphs.2020.12.009
[34]  Ju, W., Perkins, G.A., Kim, K., Bastola, T., Choi, W. and Choi, S. (2023) Glaucomatous Optic Neuropathy: Mitochondrial Dynamics, Dysfunction and Protection in Retinal Ganglion Cells. Progress in Retinal and Eye Research, 95, Article ID: 101136.
https://doi.org/10.1016/j.preteyeres.2022.101136
[35]  Bader, V. and Winklhofer, K.F. (2020) Mitochondria at the Interface between Neurodegeneration and Neuroinflammation. Seminars in Cell & Developmental Biology, 99, 163-171.
https://doi.org/10.1016/j.semcdb.2019.05.028
[36]  van Horssen, J., van Schaik, P. and Witte, M. (2019) Inflammation and Mitochondrial Dysfunction: A Vicious Circle in Neurodegenerative Disorders? Neuroscience Letters, 710, Article ID: 132931.
https://doi.org/10.1016/j.neulet.2017.06.050
[37]  Duarte, J.N. (2021) Neuroinflammatory Mechanisms of Mitochondrial Dysfunction and Neurodegeneration in Glaucoma. Journal of Ophthalmology, 2021, Article ID: 4581909.
https://doi.org/10.1155/2021/4581909
[38]  Tezel, G. (2021) Multifactorial Pathogenic Processes of Retinal Ganglion Cell Degeneration in Glaucoma towards Multi-Target Strategies for Broader Treatment Effects. Cells, 10, Article 1372.
https://doi.org/10.3390/cells10061372
[39]  He, S., Stankowska, D.L., Ellis, D.Z., Krishnamoorthy, R.R. and Yorio, T. (2018) Targets of Neuroprotection in Glaucoma. Journal of Ocular Pharmacology and Therapeutics, 34, 85-106.
https://doi.org/10.1089/jop.2017.0041
[40]  Weinreb, R.N., Leung, C.K.S., Crowston, J.G., Medeiros, F.A., Friedman, D.S., Wiggs, J.L., et al. (2016) Primary Open-Angle Glaucoma. Nature Reviews Disease Primers, 2, Article No. 16067.
https://doi.org/10.1038/nrdp.2016.67
[41]  Zaher, O., Kuchtaruk, A.A., McGinnis, E.S., Paunic, M. and Malvankar-Mehta, M.S. (2024) Effect of Various Relaxation Techniques on the Intraocular Pressure of Patients with Glaucoma: Systematic Review and Meta-Analysis. Canadian Journal of Ophthalmology, 59, e343-e349.
https://doi.org/10.1016/j.jcjo.2023.06.007
[42]  Dada, T., Bhai, N., Midha, N., Shakrawal, J., Kumar, M., Chaurasia, P., et al. (2021) Effect of Mindfulness Meditation on Intraocular Pressure and Trabecular Meshwork Gene Expression: A Randomized Controlled Trial. American Journal of Ophthalmology, 223, 308-321.
https://doi.org/10.1016/j.ajo.2020.10.012
[43]  Dada, T., Lahri, B., Mahalingam, K., Shakrawal, J., Kumar, A., Sihota, R., et al. (2021) Beneficial Effect of Mindfulness Based Stress Reduction on Optic Disc Perfusion in Primary Open Angle Glaucoma: A Randomized Controlled Trial. Journal of Traditional and Complementary Medicine, 11, 581-586.
https://doi.org/10.1016/j.jtcme.2021.06.006
[44]  Weinreb, R.N., Aung, T. and Medeiros, F.A. (2014) The Pathophysiology and Treatment of Glaucoma. JAMA, 311, 1901-1911.
https://doi.org/10.1001/jama.2014.3192
[45]  Lindén, C. and Alm, A. (1999) Prostaglandin Analogues in the Treatment of Glaucoma. Drugs & Aging, 14, 387-398.
https://doi.org/10.2165/00002512-199914050-00006
[46]  Alm, A., Grierson, I. and Shields, M.B. (2008) Side Effects Associated with Prostaglandin Analog Therapy. Survey of Ophthalmology, 53, S93-S105.
https://doi.org/10.1016/j.survophthal.2008.08.004
[47]  Brooks, A.M.V. and Gillies, W.E. (1992) Ocular β-Blockers in Glaucoma Management. Clinical Pharmacological Aspects. Drugs & Aging, 2, 208-221.
https://doi.org/10.2165/00002512-199202030-00005
[48]  Clement Freiberg, J., von Spreckelsen, A., Kolko, M., Azuara-Blanco, A. and Virgili, G. (2022) Rho Kinase Inhibitor for Primary Open-Angle Glaucoma and Ocular Hypertension. Cochrane Database of Systematic Reviews, 6, CD013817.
https://doi.org/10.1002/14651858.cd013817.pub2
[49]  Kahook, M.Y., Serle, J.B., Mah, F.S., Kim, T., Raizman, M.B., Heah, T., et al. (2019) Long-Term Safety and Ocular Hypotensive Efficacy Evaluation of Netarsudil Ophthalmic Solution: Rho Kinase Elevated IOP Treatment Trial (Rocket-2). American Journal of Ophthalmology, 200, 130-137.
https://doi.org/10.1016/j.ajo.2019.01.003
[50]  Yadav, K.S., Rajpurohit, R. and Sharma, S. (2019) Glaucoma: Current Treatment and Impact of Advanced Drug Delivery Systems. Life Sciences, 221, 362-376.
https://doi.org/10.1016/j.lfs.2019.02.029
[51]  Liu, X.Y. and Sun, X.H. (2024) Research Progress of Retinal Neuroprotective Drugs for Glaucoma. Chinese Journal of Ophthalmology, 60, 860-869.
[52]  Gazzard, G., Konstantakopoulou, E., Garway-Heath, D., Garg, A., Vickerstaff, V., Hunter, R., et al. (2019) Selective Laser Trabeculoplasty versus Eye Drops for First-Line Treatment of Ocular Hypertension and Glaucoma (Light): A Multicentre Randomised Controlled Trial. The Lancet, 393, 1505-1516.
https://doi.org/10.1016/s0140-6736(18)32213-x
[53]  Lim, R. (2022) The Surgical Management of Glaucoma: A Review. Clinical & Experimental Ophthalmology, 50, 213-231.
https://doi.org/10.1111/ceo.14028
[54]  Gedde, S.J., Herndon, L.W., Brandt, J.D., Budenz, D.L., Feuer, W.J. and Schiffman, J.C. (2012) Postoperative Complications in the Tube versus Trabeculectomy (TVT) Study during Five Years of Follow-Up. American Journal of Ophthalmology, 153, 804-814.e1.
https://doi.org/10.1016/j.ajo.2011.10.024

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133