全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

CRISPR-Cas系统在医学诊断中的研究进展
Research Progress of CRISPR-Cas System in Medical Diagnosis

DOI: 10.12677/jcpm.2025.42169, PP. 231-239

Keywords: CRISPR-Cas系统,Cas蛋白,医学诊断
CRISPR-Cas System
, Cas Protein, Medical Diagnosis

Full-Text   Cite this paper   Add to My Lib

Abstract:

簇状规则间隔短回文重复序列(CRISPR)和CRISPR相关蛋白(Cas)系统对核酸具有特异的识别、顺式切割和非特异性的反式切割能力,已经成为分子诊断领域的关键工具。凭借其卓越的特异性和灵敏度,CRISPR-Cas系统结合生物传感技术,能够高效检测核酸、蛋白质、小分子等多种靶标,近年来在医学诊断领域展现巨大潜力。本文首先对CRISPR-Cas系统的组成及分类进行介绍,然后简述了CRISPR/Cas系统在核酸和非核酸靶标医学诊断领域的应用,最后讨论了CRISPR/Cas系统当前的挑战及未来的发展前景。
The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated protein (Cas) systems, characterized by their specific nucleic acid recognition, cis-cleavage, and nonspecific trans-cleavage activities, have emerged as pivotal tools in molecular diagnostics. With high specificity and sensitivity, CRISPR-Cas systems integrated with biosensing technologies enable efficient detection of diverse targets, including nucleic acids, proteins, and small molecules, demonstrating significant potential in medical diagnostics in recent years. In this review, we first introduce the components and classification of CRISPR-Cas systems. Then, we briefly describe the application of the CRISPR-Cas system in the medical diagnosis of nucleic acid and non-nucleic acid targets. Finally, we discuss the current challenges and future prospects for CRISPR-Cas systems.

References

[1]  Richardet, E., Villavicencio, R., Hernandez, P.A., Acosta, L., Molina, M., Dicalbo, L., et al. (2016) P1.09: Delays in the Diagnosis and Treatment of Lung Cancer. Journal of Thoracic Oncology, 11, S185.
https://doi.org/10.1016/j.jtho.2016.08.031
[2]  Nimse, S.B., Sonawane, M.D., Song, K. and Kim, T. (2016) Biomarker Detection Technologies and Future Directions. The Analyst, 141, 740-755.
https://doi.org/10.1039/c5an01790d
[3]  Nikanjam, M., Kato, S. and Kurzrock, R. (2022) Liquid Biopsy: Current Technology and Clinical Applications. Journal of Hematology & Oncology, 15, Article No. 131.
https://doi.org/10.1186/s13045-022-01351-y
[4]  Ignatiadis, M., Sledge, G.W. and Jeffrey, S.S. (2021) Liquid Biopsy Enters the Clinic—Implementation Issues and Future Challenges. Nature Reviews Clinical Oncology, 18, 297-312.
https://doi.org/10.1038/s41571-020-00457-x
[5]  Wang, J.Y., Pausch, P. and Doudna, J.A. (2022) Structural Biology of CRISPR-Cas Immunity and Genome Editing Enzymes. Nature Reviews Microbiology, 20, 641-656.
https://doi.org/10.1038/s41579-022-00739-4
[6]  Wang, Y., Huang, C. and Zhao, W. (2022) Recent Advances of the Biological and Biomedical Applications of CRISPR/Cas Systems. Molecular Biology Reports, 49, 7087-7100.
https://doi.org/10.1007/s11033-022-07519-6
[7]  Bhatia, S., Pooja and Yadav, S.K. (2023) CRISPR-Cas for Genome Editing: Classification, Mechanism, Designing and Applications. International Journal of Biological Macromolecules, 238, Article ID: 124054.
https://doi.org/10.1016/j.ijbiomac.2023.124054
[8]  Weng, Z., You, Z., Yang, J., Mohammad, N., Lin, M., Wei, Q., et al. (2023) CRISPR‐Cas Biochemistry and CRISPR‐Based Molecular Diagnostics. Angewandte Chemie International Edition, 62, e202214987.
https://doi.org/10.1002/anie.202214987
[9]  Zavvar, T.S., Khoshbin, Z., Ramezani, M., Alibolandi, M., Abnous, K. and Taghdisi, S.M. (2022) CRISPR/Cas-Engineered Technology: Innovative Approach for Biosensor Development. Biosensors and Bioelectronics, 214, Article ID: 114501.
https://doi.org/10.1016/j.bios.2022.114501
[10]  Ghouneimy, A., Mahas, A., Marsic, T., Aman, R. and Mahfouz, M. (2022) CRISPR-Based Diagnostics: Challenges and Potential Solutions toward Point-of-Care Applications. ACS Synthetic Biology, 12, 1-16.
https://doi.org/10.1021/acssynbio.2c00496
[11]  Zhou, L., Peng, R., Zhang, R. and Li, J. (2018) The Applications of CRISPR/Cas System in Molecular Detection. Journal of Cellular and Molecular Medicine, 22, 5807-5815.
https://doi.org/10.1111/jcmm.13925
[12]  Tang, Y., Gao, L., Feng, W., Guo, C., Yang, Q., Li, F., et al. (2021) The CRISPR-Cas Toolbox for Analytical and Diagnostic Assay Development. Chemical Society Reviews, 50, 11844-11869.
https://doi.org/10.1039/d1cs00098e
[13]  Kaminski, M.M., Abudayyeh, O.O., Gootenberg, J.S., Zhang, F. and Collins, J.J. (2021) CRISPR-Based Diagnostics. Nature Biomedical Engineering, 5, 643-656.
https://doi.org/10.1038/s41551-021-00760-7
[14]  Hryhorowicz, M., Lipiński, D. and Zeyland, J. (2023) Evolution of CRISPR/Cas Systems for Precise Genome Editing. International Journal of Molecular Sciences, 24, Article No. 14233.
https://doi.org/10.3390/ijms241814233
[15]  Rossetti, M., Merlo, R., Bagheri, N., Moscone, D., Valenti, A., Saha, A., et al. (2022) Enhancement of CRISPR/Cas12a trans-Cleavage Activity Using Hairpin DNA Reporters. Nucleic Acids Research, 50, 8377-8391.
https://doi.org/10.1093/nar/gkac578
[16]  Jiang, F. and Doudna, J.A. (2017) CRISPR-Cas9 Structures and Mechanisms. Annual Review of Biophysics, 46, 505-529.
https://doi.org/10.1146/annurev-biophys-062215-010822
[17]  Wu, W.Y., Lebbink, J.H.G., Kanaar, R., Geijsen, N. and van der Oost, J. (2018) Genome Editing by Natural and Engineered CRISPR-Associated Nucleases. Nature Chemical Biology, 14, 642-651.
https://doi.org/10.1038/s41589-018-0080-x
[18]  Kivrak, E., Pauzaite, T., Copeland, N., Hardy, J., Kara, P., Firlak, M., et al. (2021) Detection of CRISPR-Cas9-Mediated Mutations Using a Carbon Nanotube-Modified Electrochemical Genosensor. Biosensors, 11, Article No. 17.
https://doi.org/10.3390/bios11010017
[19]  Wang, C., Qu, Y., Cheng, J.K.W., Hughes, N.W., Zhang, Q., Wang, M., et al. (2022) dCas9-Based Gene Editing for Cleavage-Free Genomic Knock-In of Long Sequences. Nature Cell Biology, 24, 268-278.
https://doi.org/10.1038/s41556-021-00836-1
[20]  Nguyen, G.T., Dhingra, Y. and Sashital, D.G. (2022) Miniature CRISPR-Cas12 Endonucleases-Programmed DNA Targeting in a Smaller Package. Current Opinion in Structural Biology, 77, Article ID: 102466.
https://doi.org/10.1016/j.sbi.2022.102466
[21]  Yamano, T., Zetsche, B., Ishitani, R., Zhang, F., Nishimasu, H. and Nureki, O. (2017) Structural Basis for the Canonical and Non-Canonical PAM Recognition by CRISPR-Cpf1. Molecular Cell, 67, 633-645.e3.
https://doi.org/10.1016/j.molcel.2017.06.035
[22]  Yang, Y., Wang, D., Lü, P., Ma, S. and Chen, K. (2023) Research Progress on Nucleic Acid Detection and Genome Editing of CRISPR/Cas12 System. Molecular Biology Reports, 50, 3723-3738.
https://doi.org/10.1007/s11033-023-08240-8
[23]  Leung, R.K., Cheng, Q., Wu, Z., Khan, G., Liu, Y., Xia, H., et al. (2022) CRISPR-Cas12-Based Nucleic Acids Detection Systems. Methods, 203, 276-281.
https://doi.org/10.1016/j.ymeth.2021.02.018
[24]  Wu, H., Chen, X., Zhang, M., Wang, X., Chen, Y., Qian, C., et al. (2021) Versatile Detection with CRISPR/Cas System from Applications to Challenges. TrAC Trends in Analytical Chemistry, 135, Article ID: 116150.
https://doi.org/10.1016/j.trac.2020.116150
[25]  Gleditzsch, D., Pausch, P., Müller-Esparza, H., Özcan, A., Guo, X., Bange, G., et al. (2018) PAM Identification by CRISPR-Cas Effector Complexes: Diversified Mechanisms and Structures. RNA Biology, 16, 504-517.
https://doi.org/10.1080/15476286.2018.1504546
[26]  Liu, L. and Pei, D. (2022) Insights Gained from RNA Editing Targeted by the CRISPR-Cas13 Family. International Journal of Molecular Sciences, 23, Article ID: 11400.
https://doi.org/10.3390/ijms231911400
[27]  Deng, X., Osikpa, E., Yang, J., Oladeji, S.J., Smith, J., Gao, X., et al. (2023) Structural Basis for the Activation of a Compact CRISPR-Cas13 Nuclease. Nature Communications, 14, Article No. 5845.
https://doi.org/10.1038/s41467-023-41501-5
[28]  Ding, R., Shen, Y., Yuan, M., Zheng, X., Chen, S. and Duan, G. (2022) Rapid and Facile Detection of HBV with CRISPR/Cas13a. New Journal of Chemistry, 46, 19997-20004.
https://doi.org/10.1039/d2nj02674k
[29]  Barnes, K.G., Lachenauer, A.E., Nitido, A., Siddiqui, S., Gross, R., Beitzel, B., et al. (2020) Deployable CRISPR-Cas13a Diagnostic Tools to Detect and Report Ebola and Lassa Virus Cases in Real-Time. Nature Communications, 11, Article No. 4131.
https://doi.org/10.1038/s41467-020-17994-9
[30]  Zhou, H., Bu, S., Xu, Y., Xue, L., Li, Z., Hao, Z., et al. (2022) CRISPR/Cas13a Combined with Hybridization Chain Reaction for Visual Detection of Influenza a (H1N1) Virus. Analytical and Bioanalytical Chemistry, 414, 8437-8445.
https://doi.org/10.1007/s00216-022-04380-1
[31]  Wu, P., Ye, X., Wang, D., Gong, F., Wei, X., Xiang, S., et al. (2022) A Novel CRISPR/Cas14a System Integrated with 2D Porphyrin Metal-Organic Framework for Microcystin-Lr Determination through a Homogeneous Competitive Reaction. Journal of Hazardous Materials, 424, Article ID: 127690.
https://doi.org/10.1016/j.jhazmat.2021.127690
[32]  Karvelis, T., Bigelyte, G., Young, J.K., Hou, Z., Zedaveinyte, R., Budre, K., et al. (2020) PAM Recognition by Miniature CRISPR-Cas12f Nucleases Triggers Programmable Double-Stranded DNA Target Cleavage. Nucleic Acids Research, 48, 5016-5023.
https://doi.org/10.1093/nar/gkaa208
[33]  Lai, Y., Guo, K., Zhu, C., Lv, Y., Wu, H., Zhang, L., et al. (2025) Cas14videt: A Visual Instant Method Free from PAM Restriction for Antibiotic Resistance Bacteria Detection. Biosensors and Bioelectronics, 268, Article ID: 116884.
https://doi.org/10.1016/j.bios.2024.116884
[34]  Harrington, L.B., Burstein, D., Chen, J.S., Paez-Espino, D., Ma, E., Witte, I.P., et al. (2018) Programmed DNA Destruction by Miniature CRISPR-Cas14 Enzymes. Science, 362, 839-842.
https://doi.org/10.1126/science.aav4294
[35]  He, Y., Shao, S. and Chen, J. (2023) High-Fidelity Identification of Single Nucleotide Polymorphism by Type V CRISPR Systems. ACS Sensors, 8, 4478-4483.
https://doi.org/10.1021/acssensors.3c02158
[36]  Zhao, X., He, Y., Shao, S., Ci, Q., Chen, L., Lu, X., et al. (2024) CRISPR/Cas14 and G-Quadruplex Dnazyme-Driven Biosensor for Paper-Based Colorimetric Detection of African Swine Fever Virus. ACS Sensors, 9, 2413-2420.
https://doi.org/10.1021/acssensors.4c00090
[37]  Su, W., Li, J., Ji, C., Chen, C., Wang, Y., Dai, H., et al. (2023) CRISPR/Cas Systems for the Detection of Nucleic Acid and Non-Nucleic Acid Targets. Nano Research, 16, 9940-9953.
https://doi.org/10.1007/s12274-023-5567-4
[38]  Chen, J.S., Ma, E., Harrington, L.B., Da Costa, M., Tian, X., Palefsky, J.M., et al. (2018) CRISPR-Cas12a Target Binding Unleashes Indiscriminate Single-Stranded Dnase Activity. Science, 360, 436-439.
https://doi.org/10.1126/science.aar6245
[39]  Wang, X., He, S., Zhao, N., Liu, X., Cao, Y., Zhang, G., et al. (2020) Development and Clinical Application of a Novel CRISPR-Cas12a Based Assay for the Detection of African Swine Fever Virus. BMC Microbiology, 20, Article No. 282.
https://doi.org/10.1186/s12866-020-01966-6
[40]  Sun, Y., Yu, L., Liu, C., Ye, S., Chen, W., Li, D., et al. (2021) One-Tube SARS-CoV-2 Detection Platform Based on RT-RPA and CRISPR/Cas12a. Journal of Translational Medicine, 19, Article No. 74.
https://doi.org/10.1186/s12967-021-02741-5
[41]  Cai, D., Wang, Y., Zhang, Z., Huang, E., Yang, N., Yang, X., et al. (2025) Droplet Pairing-Merging Enabled Digital RPA-CRISPR/Cas12a (DIMERIC) Assay for Rapid and Precise Quantification of Hepatitis B Virus DNA. Biosensors and Bioelectronics, 276, Article ID: 117256.
https://doi.org/10.1016/j.bios.2025.117256
[42]  Hu, J., Sheng, Y., Kwak, K.J., Shi, J., Yu, B. and Lee, L.J. (2017) A Signal-Amplifiable Biochip Quantifies Extracellular Vesicle-Associated RNAs for Early Cancer Detection. Nature Communications, 8, Article No. 1683.
https://doi.org/10.1038/s41467-017-01942-1
[43]  Vanlandewijck, M., He, L., Mäe, M.A., Andrae, J., Ando, K., Del Gaudio, F., et al. (2018) A Molecular Atlas of Cell Types and Zonation in the Brain Vasculature. Nature, 554, 475-480.
https://doi.org/10.1038/nature25739
[44]  Zhang, Y., Su, R., Zhang, Z., Jiang, Y., Miao, Y., Zhou, S., et al. (2025) An Ultrasensitive One-Pot Cas13a-Based Microfluidic Assay for Rapid Multiplexed Detection of MicroRNAs. Biosensors and Bioelectronics, 274, Article ID: 117212.
https://doi.org/10.1016/j.bios.2025.117212
[45]  Pei, J., Li, L., Li, C., Li, Z., Wu, Y., Kuang, H., et al. (2025) Dumbbell Probe-Bridged CRISPR/Cas13a and Nicking-Mediated DNA Cascade Reaction for Highly Sensitive Detection of Colorectal Cancer-Related MicroRNAs. Biosensors and Bioelectronics, 273, Article ID: 117190.
https://doi.org/10.1016/j.bios.2025.117190
[46]  Peng, L., Zhou, J., Liu, G., Yin, L., Ren, S., Man, S., et al. (2020) CRISPR-Cas12a Based Aptasensor for Sensitive and Selective ATP Detection. Sensors and Actuators B: Chemical, 320, Article ID: 128164.
https://doi.org/10.1016/j.snb.2020.128164
[47]  Cheng, X., Li, Y., Kou, J., Liao, D., Zhang, W., Yin, L., et al. (2022) Novel Non-Nucleic Acid Targets Detection Strategies Based on CRISPR/Cas Toolboxes: A Review. Biosensors and Bioelectronics, 215, Article ID: 114559.
https://doi.org/10.1016/j.bios.2022.114559
[48]  Han, C., Li, W., Li, Q., Xing, W., Luo, H., Ji, H., et al. (2022) CRISPR/Cas12a-Derived Electrochemical Aptasensor for Ultrasensitive Detection of COVID-19 Nucleocapsid Protein. Biosensors and Bioelectronics, 200, Article ID: 113922.
https://doi.org/10.1016/j.bios.2021.113922
[49]  Yue, Y., Liu, M., Ma, M., Xu, Z., Zhang, H., Wang, Q., et al. (2025) CRISPR/Cas14a Integrated with DNA Walker Based on Magnetic Self-Assembly for Human Papillomavirus Type 16 Oncoprotein E7 Ultrasensitive Detection. Biosensors and Bioelectronics, 272, Article ID: 117135.
https://doi.org/10.1016/j.bios.2025.117135
[50]  Jia, Z., Li, Z. and Liu, C. (2023) CRISPR-Powered Biosensing Platform for Quantitative Detection of Alpha-Fetoprotein by a Personal Glucose Meter. Sensors and Actuators B: Chemical, 390, Article ID: 133994.
https://doi.org/10.1016/j.snb.2023.133994
[51]  Chen, Y., Wu, H., Qian, S., Yu, X., Chen, H. and Wu, J. (2022) Applying CRISPR/Cas System as a Signal Enhancer for Dnazyme-Based Lead Ion Detection. Analytica Chimica Acta, 1192, Article ID: 339356.
https://doi.org/10.1016/j.aca.2021.339356
[52]  Yang, H., Li, F., Xue, T., Khan, M.R., Xia, X., Busquets, R., et al. (2022) Csm6-Dnazyme Tandem Assay for One-Pot and Sensitive Analysis of Lead Pollution and Bioaccumulation in Mice. Analytical Chemistry, 94, 16953-16959.
https://doi.org/10.1021/acs.analchem.2c04589
[53]  Lai, Y., Li, M., Liao, X. and Zou, L. (2022) Dnazyme-Regulated CRISPR/Cas12a Based Fluorescent Biosensor for Sensitive Detection of Alkaline Phosphatase Activity and Inhibition. Analytica Chimica Acta, 1233, Article ID: 340518.
https://doi.org/10.1016/j.aca.2022.340518
[54]  Lee, I., Kwon, S., Sorci, M., Heeger, P.S. and Dordick, J.S. (2021) Highly Sensitive Immuno-CRISPR Assay for CXCL9 Detection. Analytical Chemistry, 93, 16528-16534.
https://doi.org/10.1021/acs.analchem.1c03705
[55]  Liu, H., Lv, M., Li, X., Su, M., Nie, Y. and Ying, Z. (2025) Ligation-Recognition Triggered Rpa-Cas12a Cis-Cleavage Fluorogenic RNA Aptamer for One-Pot and Label-Free Detection of MicroRNA in Breast Cancer. Biosensors and Bioelectronics, 272, Article ID: 117106.
https://doi.org/10.1016/j.bios.2024.117106
[56]  Yang, R., Guan, X., Zhang, J., Moon, J., Guo, C., Jia, Z., et al. (2025) Quencher-Free CRISPR-Based Molecular Detection Using an Amphiphilic DNA Fluorescence Probe. Biosensors and Bioelectronics, 271, Article ID: 117054.
https://doi.org/10.1016/j.bios.2024.117054
[57]  Wang, W., Du, H., Dai, C., Ma, H., Luo, S., Wang, X., et al. (2025) Amplification-Free Detection of Mycobacterium tuberculosis Using CRISPR-Cas12a and Graphene Field-Effect Transistors. Nanoscale, 17, 4603-4609.
https://doi.org/10.1039/d4nr03852e
[58]  Jiang, H., Zhu, X., Jiao, J., Yan, C., Liu, K., Chen, W., et al. (2025) CRISPR/dCas9-Based Hotspot Self-Assembling SERS Biosensor Integrated with a Smartphone for Simultaneous, Ultrasensitive and Robust Detection of Multiple Pathogens. Biosensors and Bioelectronics, 270, Article ID: 116974.
https://doi.org/10.1016/j.bios.2024.116974
[59]  Liu, C., Liu, Q., Chen, X., Guo, M., Chen, Z., Zhao, J., et al. (2025) A Novel Label-Free Biosensor for Myocardial Ischemia Biomarker Detection via CRISPR/12a. Biosensors and Bioelectronics, 270, Article ID: 116954.
https://doi.org/10.1016/j.bios.2024.116954
[60]  Zhuang, T., Gao, C., Zhao, W., Yu, H., Liu, Y., Zhang, N., et al. (2025) A Minimal Transcription Template-Based Amplification-Free CRISPR-Cas13a Strategy for DNA Detection. Biosensors and Bioelectronics, 270, Article ID: 116918.
https://doi.org/10.1016/j.bios.2024.116918
[61]  Fu, J., Mo, R., Li, Z., Xu, S., Cheng, X., Lu, B., et al. (2025) An Extraction-Free One-Pot Assay for Rapid Detection of Klebsiella Pneumoniae by Combining RPA and CRISPR/Cas12a. Biosensors and Bioelectronics, 267, Article ID: 116740.
https://doi.org/10.1016/j.bios.2024.116740
[62]  Shi, X., Zhang, J., Ding, Y., Li, H., Yao, S., Hu, T., et al. (2024) Ultrasensitive Detection Platform for Staphylococcus aureus Based on Dnazyme Tandem Blocking CRISPR/Cas12a System. Biosensors and Bioelectronics, 264, Article ID: 116671.
https://doi.org/10.1016/j.bios.2024.116671
[63]  Pian, H., Wang, H., Wang, H., Tang, F. and Li, Z. (2024) Capillarity-Powered and CRISPR/Cas12a-Responsive DNA Hydrogel Distance Sensor for Highly Sensitive Visual Detection of HPV DNA. Biosensors and Bioelectronics, 264, Article ID: 116657.
https://doi.org/10.1016/j.bios.2024.116657
[64]  Yu, Y., Zhang, Y., Zhao, Y., Lv, K., Ai, L., Wu, Z., et al. (2024) Probiotic Bacterial Adsorption Coupled with CRISPR/Cas12a System for Mercury (II) Ions Detection. Biosensors and Bioelectronics, 263, Article ID: 116627.
https://doi.org/10.1016/j.bios.2024.116627

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133