全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

类脑智能高层次人才培养模式改革与实践
Reform and Practice of High Level Talent Training Mode for Brain-Inspired Intelligence

DOI: 10.12677/ces.2025.133194, PP. 345-355

Keywords: 生物医学工程,类脑智能,高层次人才,培养模式,改革
Biomedical Engineering
, Brain-Inspired Intelligence, High-Level Talents, Training Model, Reform

Full-Text   Cite this paper   Add to My Lib

Abstract:

类脑智能是生物医学工程学科的一个重要方向,目前已经上升为国际科技竞争的一个战略高地,迫切需要培养造就能解决疑难复杂类脑智能科学问题及其背后“卡脖子”技术问题的科研骨干和未来领军人才。然而,传统的生物医学工程–类脑智能人才培养模式还存在不足,影响到高层次研究生培养质量。本研究以类脑智能核心课程改革作为突破口,以高水平科研支撑研究生培养,构建了以科–教、赛–课、赛–研“三融合”为特征的类脑智能高层次人才培养新模式,塑造了一支“导学、导研、导赛”的“三导型”导师队伍,以加强“三融合”之间的贯通性,提高高层次、创新性人才培养质量。十多年的实践表明,“三融合”、“三导型”人才培养模式实现了学生学习内生动力和创新能力提高、工程实践能力增强以及就业前景好的良性循环,高层次人才培养质量改善显著。
Brain-inspired intelligence is an important direction in the subject of biomedical engineering, and at present, it has risen to a strategic highland of international technological competition. There is an urgent need to cultivate research backbones and future leading talents, who can solve difficult and complex brain-inspired intelligent scientific problems, as well as chokehold technical issues behind scientific problems. However, the traditional biomedical engineering—brain-inspired intelligence talent training mode still has shortcomings, which affects the quality of high-level graduate education. This study first takes the reform of core courses in the field of brain-inspired intelligence as a breakthrough point, and then supports the cultivation of graduate students through high-level scientific research. Finally, a new mode characterized by “three fusions” (science and education, competition and course, competition and research) for training high-level talents in the field of brain-inspired intelligence is constructed. A team of mentors who can synergistically supervise learning, research and competition is formed, named “three supervising” mentors, in order to enhance continuity among “three fusions” and improve the quality of training high-level and innovative talents. More than ten years of practice have shown that the talent training mode with “three fusions” and “three supervising” realizes a virtuous circle among the improved intrinsic motivation for learning and innovation capacity, enhanced engineering practice ability and good employment prospects. The quality of high-level talent cultivation has been significantly improved.

References

[1]  张学博, 袁天蔚, 张丽雯, 朱成姝, 熊燕, 阮梅花. 2022年脑科学与类脑智能发展态势[J]. 生命科学, 2023, 35(1): 1-17.
[2]  曾毅, 张倩, 赵菲菲, 等. 从认知脑的计算模拟到类脑人工智能[J]. 人工智能, 2022(6): 28-40.
[3]  李萍萍, 马涛, 张鑫, 等. 各国脑计划实施特点对我国脑科学创新的启示[J]. 同济大学学报(医学版), 2019, 40(4): 397-401.
[4]  Naghshvarianjahromi, M., Kumar, S. and Deen, M.J. (2019) Brain-Inspired Intelligence for Real-Time Health Situation Understanding in Smart E-Health Home Applications. IEEE Access, 7, 180106-180126.
https://doi.org/10.1109/access.2019.2958827
[5]  周慧颖, 郄海霞. 世界一流大学工程教育跨学科课程建设的经验与启示: 以麻省理工学院为例[J]. 黑龙江高教研究, 2014(2): 50-53.
[6]  Klaassen, R.G. (2018) Interdisciplinary Education: A Case Study. European Journal of Engineering Education, 43, 842-859.
https://doi.org/10.1080/03043797.2018.1442417
[7]  Menken, S., Keestra, M., Rutting, L., et al. (2016) An Introduction to Interdisciplinary Research: Theory and Practice. Amsterdam University Press, 5, 12.
[8]  Shulman, L.S., Golde, C.M., Bueschel, A.C. and Garabedian, K.J. (2006) Reclaiming Education’s Doctorates: A Critique and a Proposal. Educational Researcher, 35, 25-32.
https://doi.org/10.3102/0013189x035003025
[9]  文雯, 周京博. 大学教育环境如何塑造本科教学关系: 伯恩斯坦教学关系理论在大学教学研究中的探索性应用[J]. 复旦教育论坛, 2021, 19(4): 60-66.
[10]  林志勇, 李自然. 学科前沿课程与研究生创新实践能力培养[J]. 高等教育研究学报, 2017, 40(1): 116-120.
[11]  夏阳, 尧德中. 神经信息学基础[M]. 成都: 电子科技大学出版社, 2015.
[12]  饶妮妮. 异常心电图特征波定位与常见心律失常检测方法[M]. 成都: 电子科技大学出版社, 2019.
[13]  田银, 徐鹏. 脑电与认知神经科学[M]. 北京: 科学技术出版社, 2020.
[14]  Piaget, J. (1971) The Principles of Genetic Epistemology. WW Norton & Co. Inc.
[15]  Lave, J. and Wenger, E. (1991) Situated Learning: Legitimate Peripheral Participation. Cambridge University Press.
https://doi.org/10.1017/cbo9780511815355
[16]  Crawley, E., Malmqvist, J., Ostlund, S., et al. (2007) Rethinking Engineering Education: The CDIO Approach. Spring-er International Publisher, 60-62.
[17]  Kolb, D.A. (1984) Experiential Learning: Experience as the Source of Learning and Development. Prentice-Hall.
[18]  Rogers, E.M., Singhal, A. and Quinlan, M.M. (2014) Diffusion of Innovations. In: Salwen, M.B. and Stacks, D.W., Eds., An Integrated Approach to Communication Theory and Research, 2nd Edition, Routledge, 432-448.
[19]  Collins, A., Brown, J.S. and Newman, S.E. (2018) Cognitive Apprenticeship: Teaching the Crafts of Reading, Writing, and Mathematics. In: Resnick, L.B., Ed., Knowing, Learning, and Instruction: Essays in Honor of Robert Glaser, Routledge, 453-494.
https://doi.org/10.4324/9781315044408-14
[20]  Kuhn, T.S. 科学革命的结构[M]. 金吾伦, 胡新和, 译. 北京: 北京大学出版社, 2004.
[21]  Vygotsky, L.S. (1987) The Collected Works of LS Vygotsky: Problems of the Theory and History of Psychology (Vol. 3). Springer Science & Business Media.
[22]  Hutchins, E. (1995) Cognition in the Wild. The MIT Press.
https://doi.org/10.7551/mitpress/1881.001.0001
[23]  Gao, S., Yang, K., Li, C. and Li, Y. (2015) Color Constancy Using Double-Opponency. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37, 1973-1985.
https://doi.org/10.1109/tpami.2015.2396053
[24]  Liu, D., Gan, T., Rao, N., Xing, Y., Zheng, J., Li, S., et al. (2016) Identification of Lesion Images from Gastrointestinal Endoscope Based on Feature Extraction of Combinational Methods with and without Learning Process. Medical Image Analysis, 32, 281-294.
https://doi.org/10.1016/j.media.2016.04.007
[25]  Jiang, Y., Wang, J., Zhou, E., Palaniyappan, L., Luo, C., Ji, G., et al. (2023) Neuroimaging Biomarkers Define Neurophysiological Subtypes with Distinct Trajectories in Schizophrenia. Nature Mental Health, 1, 186-199.
https://doi.org/10.1038/s44220-023-00024-0
[26]  Jiang, Y., Li, W., Li, J., Li, X., Zhang, H., Sima, X., et al. (2024) Identification of Four Biotypes in Temporal Lobe Epilepsy via Machine Learning on Brain Images. Nature Communications, 15, Article No. 2221.
https://doi.org/10.1038/s41467-024-46629-6
[27]  Gibbons, M., Limoges, C., Nowotny, H., Schwartzman, S., Scott, P. and Trow, M.A. (1994) The New Production of Knowledge: The Dynamics of Science and Research in Contemporary Societies. SAGE Publishing.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133