全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

改性石墨烯/溶聚丁苯橡胶纳米复合材料的制备及性能研究
Modified Graphene/Dissolved Polystyrene Butadiene Rubber Nanocomposites Preparation and Properties Study

DOI: 10.12677/amc.2025.132010, PP. 79-88

Keywords: 还原氧化石墨烯,白炭黑,溶聚丁苯橡胶,动态力学性能
Reduced Graphene Oxide
, White Carbon Black, Dissolved Polystyrene Butadiene Rubber, Dynamic Mechanical Properties

Full-Text   Cite this paper   Add to My Lib

Abstract:

将水合肼与氧化石墨烯(GO)在特定条件下进行反应,通过水合肼的还原作用,成功制得还原氧化石墨烯(RGO)。随后,将RGO与溶聚丁苯橡胶(SSBR)进行胶液搅拌混合,利用高温煮出工艺,使RGO均匀分散在SSBR胶液中。对制备的RGO/白炭黑/SSBR纳米复合材料进行性能测试。结果显示,RGO的加入显著提高了材料的力学性能,拉伸强度从10.7 MPa提升至13.1 MPa,提高约22.4%,硬度从65提高至68,这主要归因于RGO与橡胶基体之间的良好界面相互作用以及其优异的力学增强效果。同时,白炭黑的协同作用进一步优化了材料的耐磨性,磨耗从0.432 cm3减少到0.332 cm3,下降幅度23.2%。此外,通过动态力学分析发现,复合材料在0℃时抗湿滑性能和60℃时滚动阻力均有所改善,使其在高性能橡胶制品领域具有广阔的应用前景。
Hydrazine hydrate and graphene oxide (GO) were reacted under specific conditions. Through the reduction effect of hydrazine hydrate, reduced graphene oxide (RGO) was successfully prepared. Subsequently, RGO was mixed with solution-polymerized styrene-butadiene rubber (SSBR) by stirring the rubber solution. The high-temperature cooking process was used to evenly disperse RGO in the SSBR solution. The performance of the prepared RGO/silica/SSBR nanocomposites was tested. The results showed that the addition of RGO significantly improved the mechanical properties of the material. The tensile strength increased from 10.7 MPa to 13.1 MPa, an increase of approximately 22.4%, and the hardness increased from 65 to 68. This was mainly attributed to the good interfacial interaction between RGO and the rubber matrix and its excellent mechanical reinforcing effect. At the same time, the synergistic effect of silica further optimized the wear resistance of the material, with the abrasion decreasing from 0.432 cm3 to 0.332 cm3, a reduction of 23.2%. In addition, dynamic mechanical analysis revealed that the wet skid resistance at 0?C and the rolling resistance at 60?C of the composite material were both improved, indicating a broad application prospect in the field of high-performance rubber products.

References

[1]  李玉芳, 伍小明. 新型补强填料在橡胶中的应用研究进展[J]. 精细与专用化学品, 2019, 27(6): 45-47.
[2]  Aravinth, V., Navaneethakrishnan, V., Vishvanathperumal, S. and Gurumoorthi, G. (2023) Effect of Modified Nanographene Oxide (mGO)/Carbon Nanotubes (CNTs) Hybrid Filler on the Cure, Mechanical and Swelling Properties of Silicone Rubber Composites. Journal of Inorganic and Organometallic Polymers and Materials, 34, 282-301.
https://doi.org/10.1007/s10904-023-02818-2
[3]  Shamekh, A.M.A., Shaalan, N.M., Hanafy, T.A. and Rashad, M. (2023) Linear/nonlinear Optical Properties of Functional Inorganic mGO Nano-Filler in PVA Transparent Polymer for Flexible Optoelectronic Devices. Physica B: Condensed Matter, 651, Article ID: 414617.
https://doi.org/10.1016/j.physb.2022.414617
[4]  王宏燚. 硅氧烷官能化聚合物的制备及其改性白炭黑补强SSBR性能的研究[D]: [硕士学位论文]. 兰州: 兰州交通大学, 2023.
[5]  梁雪, 王鹭飞, 许婧婧, 等. 溶聚丁苯橡胶的官能化对白炭黑/溶聚丁苯橡胶复合材料性能的影响[J]. 轮胎工业, 2024, 44(10): 601-605.
[6]  Ozbas, B., O’Neill, C.D., Register, R.A., Aksay, I.A., Prud’homme, R.K. and Adamson, D.H. (2012) Multifunctional Elastomer Nanocomposites with Functionalized Graphene Single Sheets. Journal of Polymer Science Part B: Polymer Physics, 50, 910-916.
https://doi.org/10.1002/polb.23080
[7]  李泾贤, 郝嘉劲, 王磊, 等. 氧化石墨烯纳滤膜插层改性研究进展[J]. 膜科学与技术, 2025, 45(1): 156-171.
[8]  Chen, X., Qu, Z., Liu, Z. and Ren, G. (2022) Mechanism of Oxidization of Graphite to Graphene Oxide by the Hummers Method. ACS Omega, 7, 23503-23510.
https://doi.org/10.1021/acsomega.2c01963
[9]  黄国家, 陈志刚, 李茂东, 等. 石墨烯和氧化石墨烯的表面功能化改性[J]. 化学学报, 2016, 74(10): 789-799.
[10]  Dong, B., Wu, S., Zhang, L. and Wu, Y. (2016) High Performance Natural Rubber Composites with Well-Organized Interconnected Graphene Networks for Strain-Sensing Application. Industrial & Engineering Chemistry Research, 55, 4919-4929.
https://doi.org/10.1021/acs.iecr.6b00214
[11]  Zhong, B., Jia, Z., Dong, H., Luo, Y., Jia, D. and Liu, F. (2017) One-Step Approach to Reduce and Modify Graphene Oxide via Vulcanization Accelerator and Its Application for Elastomer Reinforcement. Chemical Engineering Journal, 317, 51-59.
https://doi.org/10.1016/j.cej.2017.02.072
[12]  Nethravathi, C. and Rajamathi, M. (2008) Chemically Modified Graphene Sheets Produced by the Solvothermal Reduction of Colloidal Dispersions of Graphite Oxide. Carbon, 46, 1994-1998.
https://doi.org/10.1016/j.carbon.2008.08.013
[13]  宋齐. 高耐磨石墨烯改性天然橡胶的制备及性能研究[D]: [硕士学位论文]. 太原: 中北大学, 2022.
[14]  李勇, 易建军, 陈继明, 等. 溶聚丁苯橡胶生产技术现状及发展建议[J]. 弹性体, 2014, 24(1): 78-82.
[15]  管艳艳, 赵萌, 袁慧杰, 等. 热重分析仪样品支架的改进[J]. 中国测试, 2024, 50(S1): 149-154.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133