|
双螺旋循环流体换热系统及其结构参数分析
|
Abstract:
针对循环流体换热系统的温度场不均匀和融雪效果不佳等问题,提出一种新型的布管形式——双螺旋布管。基于典型工程案例,构建循环流体换热系统的精细化三维有限元数值分析模型,揭示其温度场分布特征和融雪化冰过程特征,验证双螺旋循环流体换热系统的优越性,确定其主要结构参数对运行性能的影响。结果显示:相对于常用的曲流式布管和蛇式布管,双螺旋循环流体换热系统的温度场更均匀、能耗更低、效率更高、效果更佳,其换热功率分别降低3.21%和12.35%,融雪面积比分别提升2.16%和22.91%;随着布管深度的增加和换热管尺寸的减小,其能耗、效果和效率等都显著提升;随着布管间距的增大,能耗、效果和效率都是先提升后降低。结果表明,双螺旋循环流体换热系统是一种更加高效的换热系统。
A new tube arrangement pattern—double spiral tube arrangement was proposed to overcome problems such as temperature field non-uniformity and bad snow melting performance in circulating fluid heat exchange system (CFHEX). Fine 3-dimensional finite element numerical simulation models of CFHEX were built based on typical engineering case, temperature field distribution characteristics and snow-ice melting course were analyzed, superiority of double spiral CFHEX was verified, influence of its primary structure parameters to operating performance was ascertained. Results shown: compared with traditional mender flow tube arrangement and snail tube arrangement pattern, temperature field of new double spiral CFHEX is more uniform, energy consumption is lower, efficiency is higher, effectiveness is better; its heat exchange power reduces 3.21% and 12.35 respectively, melting-snow ratio raises by 2.16% and 22.91% respectively; with decrease of tube depth and size of heat exchange tube, its energy consumption, effectiveness and efficiency all raise; with increase of tube spacing, energy consumption, effectiveness and efficiency raise firstly and then reduce. Findings indicate that new double spiral CFHEX is a more efficient heat exchange system.
[1] | 文韬, 崔先泽, 范勇. 地下水源热泵抽灌井群优化布置[J]. 长江科学院院报, 2022, 39(1): 23-31, 38. |
[2] | 赵海丰, 桂树强, 李强, 等. 螺旋型埋管能源桩桩内温度场分布特征及其影响因素分析[J]. 长江科学院院报, 2017, 34(8): 153-158. |
[3] | 王华军. 流体加热道路融雪传热传质特性研究[D]: [博士学位论文]. 天津: 天津大学, 2007. |
[4] | 陈鑫, 孔纲强, 刘汉龙,等. 换热管埋设位置对桥面板除冰效果影响现场试验[J]. 防灾减灾工程学报, 2022, 42(5): 888-896, 912. |
[5] | Yiqiu, T., Chi, Z., Huijie, L., Hao, S. and Huining, X. (2020) Experimental and Numerical Analysis of the Critical Heating Strategy for Hydronic Heated Snow Melting Airfield Runway. Applied Thermal Engineering, 178, Article ID: 115508. https://doi.org/10.1016/j.applthermaleng.2020.115508 |
[6] | 林艳艳. 基于土壤源热泵路面融雪系统的实验研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2011. |
[7] | Xu, H., Shi, H., Tan, Y., Ye, Q. and Liu, X. (2022) Modeling and Assessment of Operation Economic Benefits for Hydronic Snow Melting Pavement System. Applied Energy, 326, Article ID: 119977. https://doi.org/10.1016/j.apenergy.2022.119977 |
[8] | 彭建国, 乔兰, 李庆文, 等. 机场跑道循环热流体法融雪除冰数值模拟[J]. 科学技术与工程, 2022, 22(8): 3277-3284. |
[9] | Javadi, H., Mousavi Ajarostaghi, S.S., Pourfallah, M. and Zaboli, M. (2019) Performance Analysis of Helical Ground Heat Exchangers with Different Configurations. Applied Thermal Engineering, 154, 24-36. https://doi.org/10.1016/j.applthermaleng.2019.03.021 |
[10] | 李峙, 刘福深, 杨仲轩, 等. 考虑THM耦合的地热能源桩热-力行为分析[J]. 岩土工程学报, 2023, 45(10): 2129-2138. |
[11] | 金坤铨, 王忠瑾, 刘开富, 等. 饱和砂土地基中碳化硅能源桩的传热特性测试与分析[J]. 浙江理工大学学报(自然科学), 2024, 51(4): 518-528. |
[12] | 赵文可. 基于循环流体加热的严寒地区路基融雪特性研究[D]: [博士学位论文]. 哈尔滨: 哈尔滨工业大学, 2022. |
[13] | Chen, X., Kong, G., Liu, H., Yang, T. and Zhu, X. (2020) Experimental on Thermal Performance of Bridge Deck with Hydronic Heating System. Cold Regions Science and Technology, 178, Article ID: 103130. https://doi.org/10.1016/j.coldregions.2020.103130 |
[14] | 马生涛, 陈子彦, 罗智, 等. 基于时间和用量控制的高速公路凝冰路段精细化除冰研究[J]. 公路, 2023, 68(5): 346-353. |
[15] | 席省麟, 时刚, 魏子贺. 考虑循环水-能源桩换热的单U型埋管能源桩变热流传热模型[J]. 工程热物理学报, 2023, 44(6): 1709-1719. |