|
叶片结构与植物水分生理的研究概况
|
Abstract:
叶片是植物进行光合、呼吸以及蒸腾作用的重要场所,也是对外界环境变化最敏感的部位;而水分对植物来说是至关重要的,关乎其生存、生长和发育。对于叶片水力学特性的研究层出不穷,本文从形态、解剖结构、气孔特征和叶脉特征这几个角度探究其对植物水分运输和安全的影响,为以后作者研究其他植物的叶片水分生理提供依据。
Leaf is an important place for photosynthesis, respiration and transpiration of plants, and is also the most sensitive part to changes in the external environment. Water is crucial to the survival, growth and development of plants. Studies on leaf hydraulics are endless. In this paper, the effects of leaf hydraulics on water transport and safety of plants are explored from the perspectives of morphology, anatomical structure, stomatal characteristics and vein characteristics, which will provide basis for future studies on leaf water physiology of other plants.
[1] | Tan, F., Cao, W., Li, X. and Li, Q. (2024) Characteristics, Relationships, and Anatomical Basis of Leaf Hydraulic Traits and Economic Traits in Temperate Desert Shrub Species. Life, 14, Article 834. https://doi.org/10.3390/life14070834 |
[2] | Brodribb, T.J. and Jordan, G.J. (2011) Water Supply and Demand Remain Balanced during Leaf Acclimation of Nothofagus Cunninghamii Trees. New Phytologist, 192, 437-448. https://doi.org/10.1111/j.1469-8137.2011.03795.x |
[3] | Xiong, D., Yu, T., Zhang, T., Li, Y., Peng, S. and Huang, J. (2014) Leaf Hydraulic Conductance Is Coordinated with Leaf Morpho-Anatomical Traits and Nitrogen Status in the Genus Oryza. Journal of Experimental Botany, 66, 741-748. https://doi.org/10.1093/jxb/eru434 |
[4] | Simonin, K.A., Limm, E.B. and Dawson, T.E. (2012) Hydraulic Conductance of Leaves Correlates with Leaf Lifespan: Implications for Lifetime Carbon Gain. New Phytologist, 193, 939-947. https://doi.org/10.1111/j.1469-8137.2011.04014.x |
[5] | Martin, B. and Thorstenson, Y.R. (1988) Stable Carbon Isotope Composition (δ13C), Water Use Efficiency, and Biomass Productivity of Lycopersicon esculentum, Lycopersicon pennellii, and the F1 Hybrid. Plant Physiology, 88, 213-217. https://doi.org/10.1104/pp.88.1.213 |
[6] | 刘明光. 中国自然地理图集[M]. 北京: 中国地图出版社, 2010. |
[7] | 高新生, 胡欣欣, 李廷, 李维国, 黄肖. 巴西橡胶树5个主栽品种幼苗叶片的解剖结构及光合特性研究[J]. 西南林业大学学报(自然科学), 2021, 41(3): 31-36. |
[8] | 陈雪梅, 王友保. 浅谈叶片结构对环境的适应[J]. 安徽农学通报, 2007, 13(19): 80-81. |
[9] | 曹佳乐, 樊军锋, 周永学, 等. 4个白杨派新无性系叶片解剖结构的研究[J]. 西北林学院学报, 2016, 31(4): 129-133. |
[10] | 李晓储, 黄利斌, 张永兵, 等. 四种含笑叶解剖性状与抗旱性的研究[J]. 林业科学研究, 2006, 19(2): 53-57. |
[11] | Oliveira, I., Meyer, A., Afonso, S. and Gonçalves, B. (2018) Compared Leaf Anatomy and Water Relations of Commercial and Traditional Prunus dulcis (Mill.) Cultivars under Rain-Fed Conditions. Scientia Horticulturae, 229, 226-232. https://doi.org/10.1016/j.scienta.2017.11.015 |
[12] | Xiong, D. and Flexas, J. (2022) Safety-Efficiency Tradeoffs? Correlations of Photosynthesis, Leaf Hydraulics, and Dehydration Tolerance across Species. Oecologia, 200, 51-64. https://doi.org/10.1007/s00442-022-05250-4 |
[13] | 何小三, 王玉娟, 徐林初, 龚春, 俞元春. 干旱胁迫对不同油茶品种叶片解剖结构的影响[J]. 中南林业科技大学学报, 2020, 40(10): 1-17. |
[14] | Mediavilla, S., Escudero, A. and Heilmeier, H. (2001) Internal Leaf Anatomy and Photosynthetic Resource-Use Efficiency: Interspecific and Intraspecific Comparisons. Tree Physiology, 21, 251-259. https://doi.org/10.1093/treephys/21.4.251 |
[15] | 吴一苓, 李芳兰, 胡慧. 叶脉结构与功能及其对叶片经济谱的影响[J]. 植物学报, 2022, 57(3): 388-398. |
[16] | Hua, L., He, P., Goldstein, G., Liu, H., Yin, D., Zhu, S., et al. (2019) Linking Vein Properties to Leaf Biomechanics across 58 Woody Species from a Subtropical Forest. Plant Biology, 22, 212-220. https://doi.org/10.1111/plb.13056 |
[17] | Sack, L. and Holbrook, N.M. (2006) Leaf Hydraulics. Annual Review of Plant Biology, 57, 361-381. https://doi.org/10.1146/annurev.arplant.56.032604.144141 |
[18] | Carins Murphy, M.R., Jordan, G.J. and Brodribb, T.J. (2012) Differential Leaf Expansion Can Enable Hydraulic Acclimation to Sun and Shade. Plant, Cell & Environment, 35, 1407-1418. https://doi.org/10.1111/j.1365-3040.2012.02498.x |
[19] | Sack, L., Scoffoni, C., John, G.P., Poorter, H., Mason, C.M., Mendez-Alonzo, R., et al. (2013) How Do Leaf Veins Influence the Worldwide Leaf Economic Spectrum? Review and Synthesis. Journal of Experimental Botany, 64, 4053-4080. https://doi.org/10.1093/jxb/ert316 |
[20] | 徐龙, 贺鹏程, 张统, 刘慧, 叶清. 不同原生境的6种棕榈科植物叶片水力性状的对比研究[J]. 热带亚热带植物学报, 2020, 28(5): 472-478. |
[21] | Nardini, A., Pedá, G. and Salleo, S. (2012) Alternative Methods for Scaling Leaf Hydraulic Conductance Offer New Insights into the Structure—Function Relationships of Sun and Shade Leaves. Functional Plant Biology, 39, 394-401. https://doi.org/10.1071/fp12020 |
[22] | Scoffoni, C., Rawls, M., McKown, A., Cochard, H. and Sack, L. (2011) Decline of Leaf Hydraulic Conductance with Dehydration: Relationship to Leaf Size and Venation Architecture. Plant Physiology, 156, 832-843. https://doi.org/10.1104/pp.111.173856 |
[23] | Nardini, A. and Salleo, S. (2005) Water Stress-Induced Modifications of Leaf Hydraulic Architecture in Sunflower: Co-Ordination with Gas Exchange. Journal of Experimental Botany, 56, 3093-3101. https://doi.org/10.1093/jxb/eri306 |
[24] | Blackman, C.J., Brodribb, T.J. and Jordan, G.J. (2009) Leaf Hydraulics and Drought Stress: Response, Recovery and Survivorship in Four Woody Temperate Plant Species. Plant, Cell & Environment, 32, 1584-1595. https://doi.org/10.1111/j.1365-3040.2009.02023.x |
[25] | Lo Gullo, M.A., Raimondo, F., Crisafulli, A., Salleo, S. and Nardini, A. (2010) Leaf Hydraulic Architecture and Water Relations of Three Ferns from Contrasting Light Habitats. Functional Plant Biology, 37, 566-574. https://doi.org/10.1071/fp09303 |