|
植物功能性状对全球变化的适应性策略
|
Abstract:
在当前人类活动与自然环境相互作用日益显著的背景下,以大气CO2升高、温度上升、干旱胁迫、土地利用转变及紫外辐射增强等为特征的全球变化正通过多维度生态位重构深刻影响陆地生态系统结构与功能。植物作为陆地生态系统的核心组分,通过光合代谢通路调控、繁殖策略权衡、资源分配可塑性等多维响应机制,不仅成为揭示全球变化生态效应的关键生物指示体,更为气候韧性生态系统构建提供了理论锚点。本文系统综述了全球变化对植物群落结构及功能的影响,并对植物功能性状指标的精细化以及在全球变化背景下植物功能性状动态响应机制的研究前景进行了深入探讨,旨在为后续的生态学研究和生态系统管理提供理论支撑和科学指导。
Under the background that the interaction between human activities and natural environment is becoming more and more obvious, global changes characterized by elevated atmospheric CO2, rising temperature, drought stress, land use change and enhanced ultraviolet radiation are profoundly affecting the structure and function of terrestrial ecosystem through multi-dimensional niche reconstruction. As the core component of terrestrial ecosystem, plants not only become the key biological indicators to reveal the ecological effects of global change, but also provide theoretical anchors for the construction of climate-resilient ecosystem through multi-dimensional response mechanisms such as regulation of photosynthetic metabolic pathways, balance of reproductive strategies and plasticity of resource allocation. In this paper, the effects of global change on the structure and function of plant communities are systematically reviewed, and the refinement of plant functional traits indicators and the research prospect of dynamic response mechanism of plant functional traits under the background of global change are discussed in depth, in order to provide theoretical support and scientific guidance for subsequent ecological research and ecosystem management. Finally, a research framework integrating multi-scale observation and model prediction is proposed to provide theoretical basis for ecological restoration and climate change response.
[1] | Violle, C., Navas, M., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., et al. (2007) Let the Concept of Trait Be Functional! Oikos, 116, 882-892. https://doi.org/10.1111/j.0030-1299.2007.15559.x |
[2] | Lavorel, S. and Garnier, E. (2002) Predicting Changes in Community Composition and Ecosystem Functioning from Plant Traits: Revisiting the Holy Grail. Functional Ecology, 16, 545-556. https://doi.org/10.1046/j.1365-2435.2002.00664.x |
[3] | Li, G., Yang, D. and Sun, S. (2008) Allometric Relationships between Lamina Area, Lamina Mass and Petiole Mass of 93 Temperate Woody Species Vary with Leaf Habit, Leaf Form and Altitude. Functional Ecology, 22, 557-564. https://doi.org/10.1111/j.1365-2435.2008.01407.x |
[4] | Messier, J., McGill, B.J. and Lechowicz, M.J. (2010) How Do Traits Vary across Ecological Scales? A Case for Trait‐based Ecology. Ecology Letters, 13, 838-848. https://doi.org/10.1111/j.1461-0248.2010.01476.x |
[5] | Albert, C.H., de Bello, F., Boulangeat, I., Pellet, G., Lavorel, S. and Thuiller, W. (2011) On the Importance of Intraspecific Variability for the Quantification of Functional Diversity. Oikos, 121, 116-126. https://doi.org/10.1111/j.1600-0706.2011.19672.x |
[6] | 何芸雨, 郭水良, 王喆. 植物功能性状权衡关系的研究进展[J]. 植物生态学报, 2019, 43(12): 1021-1035. |
[7] | Intergovernmental Panel on Climate Change (IPCC) (2021) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. |
[8] | National Oceanic and Atmospheric Administration (NOAA) (2023) Trends in Atmospheric Carbon Dioxide. Global Monitoring Laboratory. |
[9] | Kruijt, B., Witte, J.M., Jacobs, C.M.J. and Kroon, T. (2008) Effects of Rising Atmospheric CO2 on Evapotranspiration and Soil Moisture: A Practical Approach for the Netherlands. Journal of Hydrology, 349, 257-267. https://doi.org/10.1016/j.jhydrol.2007.10.052 |
[10] | 王秋玲, 周广胜. 春玉米持续干旱过程中常用气孔导度模型的比较研究[J]. 生态学报, 2018, 38(19): 6846-6856. |
[11] | Reich, P.B., Hobbie, S.E., Lee, T.D. and Pastore, M.A. (2018) Unexpected Reversal of C3 versus C4 Grass Response to Elevated CO2 during a 20-Year Field Experiment. Science, 360, 317-320. https://doi.org/10.1126/science.aas9313 |
[12] | Nie, M., Lu, M., Bell, J., Raut, S. and Pendall, E. (2013) Altered Root Traits Due to Elevated CO2: A Meta‐Analysis. Global Ecology and Biogeography, 22, 1095-1105. https://doi.org/10.1111/geb.12062 |
[13] | Treseder, K.K. (2004) A Meta‐Analysis of Mycorrhizal Responses to Nitrogen, Phosphorus, and Atmospheric CO2 in Field Studies. New Phytologist, 164, 347-355. https://doi.org/10.1111/j.1469-8137.2004.01159.x |
[14] | Lindroth, R.L. (2010) Impacts of Elevated Atmospheric CO2 and O3 on Forests: Phytochemistry, Trophic Interactions, and Ecosystem Dynamics. Journal of Chemical Ecology, 36, 2-21. https://doi.org/10.1007/s10886-009-9731-4 |
[15] | Robinson, E.A., Ryan, G.D. and Newman, J.A. (2012) A Meta‐Analytical Review of the Effects of Elevated CO2 on Plant-Arthropod Interactions Highlights the Importance of Interacting Environmental and Biological Variables. New Phytologist, 194, 321-336. https://doi.org/10.1111/j.1469-8137.2012.04074.x |
[16] | Springer, C.J. and Ward, J.K. (2007) Flowering Time and Elevated Atmospheric CO2. New Phytologist, 176, 243-255. https://doi.org/10.1111/j.1469-8137.2007.02196.x |
[17] | Fernando, N., Panozzo, J., Tausz, M., Norton, R., Fitzgerald, G., Khan, A., et al. (2015) Rising CO2 Concentration Altered Wheat Grain Proteome and Flour Rheological Characteristics. Food Chemistry, 170, 448-454. https://doi.org/10.1016/j.foodchem.2014.07.044 |
[18] | Hättenschwiler, S. (2001) Tree Seedling Growth in Natural Deep Shade: Functional Traits Related to Interspecific Variation in Response to Elevated CO2. Oecologia, 129, 31-42. https://doi.org/10.1007/s004420100699 |
[19] | 张凯, 张勃, 王润元, 等. CO2浓度升高对半干旱区春小麦光合作用及水分生理生态特性的影响[J]. 生态环境学报, 2021, 30(2): 223-232. |
[20] | Wright, I.J., Reich, P.B., Cornelissen, J.H.C., Falster, D.S., Garnier, E., Hikosaka, K., et al. (2005) Assessing the Generality of Global Leaf Trait Relationships. New Phytologist, 166, 485-496. https://doi.org/10.1111/j.1469-8137.2005.01349.x |
[21] | Way, D.A. and Oren, R. (2010) Differential Responses to Changes in Growth Temperature between Trees from Different Functional Groups and Biomes: A Review and Synthesis of Data. Tree Physiology, 30, 669-688. https://doi.org/10.1093/treephys/tpq015 |
[22] | Poorter, H., Niklas, K.J., Reich, P.B., Oleksyn, J., Poot, P. and Mommer, L. (2011) Biomass Allocation to Leaves, Stems and Roots: Meta‐Analyses of Interspecific Variation and Environmental Control. New Phytologist, 193, 30-50. https://doi.org/10.1111/j.1469-8137.2011.03952.x |
[23] | Chaves, M.M., Maroco, J.P. and Pereira, J.S. (2003) Understanding Plant Responses to Drought—From Genes to the Whole Plant. Functional Plant Biology, 30, 239-264. https://doi.org/10.1071/fp02076 |
[24] | Anderegg, W.R.L., Klein, T., Bartlett, M., Sack, L., Pellegrini, A.F.A., Choat, B., et al. (2016) Meta-Analysis Reveals That Hydraulic Traits Explain Cross-Species Patterns of Drought-Induced Tree Mortality across the Globe. Proceedings of the National Academy of Sciences, 113, 5024-5029. https://doi.org/10.1073/pnas.1525678113 |
[25] | Wright, I.J., Dong, N., Maire, V., Prentice, I.C., Westoby, M., Díaz, S., et al. (2017) Global Climatic Drivers of Leaf Size. Science, 357, 917-921. https://doi.org/10.1126/science.aal4760 |
[26] | Royer, D.L., Wilf, P., Janesko, D.A., Kowalski, E.A. and Dilcher, D.L. (2008) Correlations of Climate and Plant Ecology to Leaf Size and Shape: Potential Proxies for the Fossil Record. American Journal of Botany, 95, 925-933. |
[27] | Reich, P.B., Hobbie, S.E. and Lee, T.D. (2014) Plant Growth Enhancement by Elevated CO2 Eliminated by Joint Water and Nitrogen Limitation. Nature Geoscience, 7, 920-924. https://doi.org/10.1038/ngeo2284 |
[28] | 孟凡超, 郭军, 周莉, 等. 气温、CO2浓度和降水交互作用对作物生长和产量的影响[J]. 应用生态学报, 2017, 28(12): 4117-4126. |
[29] | Meng, T., Ni, J. and Harrison, S.P. (2009) Plant Morphometric Traits and Climate Gradients in Northern China: A Meta-Analysis Using Quadrat and Flora Data. Annals of Botany, 104, 1217-1229. https://doi.org/10.1093/aob/mcp230 |
[30] | Reich, P.B. and Oleksyn, J. (2004) Global Patterns of Plant Leaf N and P in Relation to Temperature and Latitude. Proceedings of the National Academy of Sciences, 101, 11001-11006. https://doi.org/10.1073/pnas.0403588101 |
[31] | Wright, I.J., Dong, N., Maire, V., Prentice, I.C., Westoby, M., Díaz, S., et al. (2017) Global Climatic Drivers of Leaf Size. Science, 357, 917-921. https://doi.org/10.1126/science.aal4760 |
[32] | Bertolino, L.T., Caine, R.S. and Gray, J.E. (2019) Impact of Stomatal Density and Morphology on Water-Use Efficiency in a Changing World. Frontiers in Plant Science, 10, Article 225. https://doi.org/10.3389/fpls.2019.00225 |
[33] | Lynch, J.P. (2018) Rightsizing Root Phenotypes for Drought Resistance. Journal of Experimental Botany, 69, 3279-3292. https://doi.org/10.1093/jxb/ery048 |
[34] | Bengough, A.G., McKenzie, B.M., Hallett, P.D. and Valentine, T.A. (2011) Root Elongation, Water Stress, and Mechanical Impedance: A Review of Limiting Stresses and Beneficial Root Tip Traits. Journal of Experimental Botany, 62, 59-68. https://doi.org/10.1093/jxb/erq350 |
[35] | Brodersen, C.R., Knipfer, T. and McElrone, A.J. (2019) In vivo Visualization of the Final Stages of Xylem Vessel Refilling in Grapevine (Vitis Vinifera) Stems. New Phytologist, 222, 864-872. |
[36] | Wright, I.J., Reich, P.B. and Westoby, M. (2001) Strategy Shifts in Leaf Physiology, Structure and Nutrient Content between Species of High‐ and Low‐Rainfall and High‐ and Low‐Nutrient Habitats. Functional Ecology, 15, 423-434. https://doi.org/10.1046/j.0269-8463.2001.00542.x |
[37] | Santiago, L.S., Kitajima, K., Wright, S.J. and Mulkey, S.S. (2004) Coordinated Changes in Photosynthesis, Water Relations and Leaf Nutritional Traits of Canopy Trees along a Precipitation Gradient in Lowland Tropical Forest. Oecologia, 139, 495-502. https://doi.org/10.1007/s00442-004-1542-2 |
[38] | 温琦, 赵文博, 张幽静, 等. 植物干旱胁迫响应的研究进展[J]. 江苏农业科学, 2020, 48(12): 11-15. |
[39] | Turner, B.L., Lambin, E.F. and Reenberg, A. (2007) The Emergence of Land Change Science for Global Environmental Change and Sustainability. Proceedings of the National Academy of Sciences, 104, 20666-20671. https://doi.org/10.1073/pnas.0704119104 |
[40] | Poorter, H., Niinemets, Ü., Poorter, L., Wright, I.J. and Villar, R. (2009) Causes and Consequences of Variation in Leaf Mass per Area (LMA): A Meta‐Analysis. New Phytologist, 182, 565-588. https://doi.org/10.1111/j.1469-8137.2009.02830.x |
[41] | Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., et al. (2004) The Worldwide Leaf Economics Spectrum. Nature, 428, 821-827. https://doi.org/10.1038/nature02403 |
[42] | Karban, R. and Baldwin, I.T. (1997) Induced Responses to Herbivory. University of Chicago Press. https://doi.org/10.7208/chicago/9780226424972.001.0001 |
[43] | Dicke, M. and Baldwin, I.T. (2010) The Evolutionary Context for Herbivore-Induced Plant Volatiles: Beyond the ‘Cry for Help’. Trends in Plant Science, 15, 167-175. https://doi.org/10.1016/j.tplants.2009.12.002 |
[44] | Bardgett, R.D., Mommer, L. and De Vries, F.T. (2014) Going Underground: Root Traits as Drivers of Ecosystem Processes. Trends in Ecology & Evolution, 29, 692-699. https://doi.org/10.1016/j.tree.2014.10.006 |
[45] | Heijden, M.G.A.V.D., Martin, F.M., Selosse, M., et al. (2015) Mycorrhizal Ecology and Evolution: The Past, the Present, and the Future. The New Phytologist, 205, 1406-1423. https://doi.org/10.1111/nph.13288 |
[46] | Matesanz, S., Gianoli, E. and Valladares, F. (2010) Global Change and the Evolution of Phenotypic Plasticity in Plants. Annals of the New York Academy of Sciences, 1206, 35-55. https://doi.org/10.1111/j.1749-6632.2010.05704.x |
[47] | Hu, X., He, Y., Gao, L., et al. (2023) Strategy Trade-Off of Predominant Stress Tolerance Relative to Competition and Reproduction Associated with Plant Functional Traits under Karst Forests. Forests, 14, Article No. 1258. https://doi.org/10.3390/f14061258 |
[48] | Gossner, M.M., Lewinsohn, T.M., Kahl, T., Grassein, F., Boch, S., Prati, D., et al. (2016) Land-Use Intensification Causes Multitrophic Homogenization of Grassland Communities. Nature, 540, 266-269. https://doi.org/10.1038/nature20575 |
[49] | Pakeman, R.J. (2011) Functional Diversity Indices Reveal the Impacts of Land Use Intensification on Plant Community Assembly. Journal of Ecology, 99, 1143-1151. https://doi.org/10.1111/j.1365-2745.2011.01853.x |
[50] | Han, T., Tang, X., Ren, H., Wang, J., Liu, N. and Guo, Q. (2021) Community/Ecosystem Functional Diversity: Measurements and Development. Acta Ecologica Sinica, 41, 3286-3295. https://doi.org/10.5846/stxb201903080442 |
[51] | Wang, G. and Huang, X. (2007) A Review of Land Use Change Models in China. Journal of Land Science, 2, 1-10. |
[52] | Dı́az, S. and Cabido, M. (2001) Vive la différence: Plant Functional Diversity Matters to Ecosystem Processes. Trends in Ecology & Evolution, 16, 646-655. https://doi.org/10.1016/s0169-5347(01)02283-2 |
[53] | Jiang, H. and Qiu, B. (2010) Inhibition of Photosynthesis by UV-B Exposure and Its Repair in the Bloom-Forming Cyanobacterium Microcystis Aeruginosa. Journal of Applied Phycology, 23, 691-696. https://doi.org/10.1007/s10811-010-9562-2 |
[54] | Bhandari, R.R. and Sharma, P.K. (2010) Photosynthetic and Biochemical Characterization of Pigments and UV-Absorbing Compounds in Phormidium Tenue Due to UV-B Radiation. Journal of Applied Phycology, 23, 283-292. https://doi.org/10.1007/s10811-010-9621-8 |
[55] | Barnes, P.W., Flint, S.D. and Caldwell, M.M. (1990) Morphological Responses of Crop and Weed Species of Different Growth Forms to Ultraviolet‐B Radiation. American Journal of Botany, 77, 1354-1360. https://doi.org/10.1002/j.1537-2197.1990.tb11387.x |
[56] | Li, H., Pan, K., Liu, Q. and Wang, J. (2009) Effect of Enhanced Ultraviolet-B on Allelopathic Potential of Zanthoxylum Bungeanum. Scientia Horticulturae, 119, 310-314. https://doi.org/10.1016/j.scienta.2008.08.010 |
[57] | Asshoff, R., Zotz, G. and Körner, C. (2006) Growth and Phenology of Mature Temperate Forest Trees in Elevated CO2. Global Change Biology, 12, 848-861. https://doi.org/10.1111/j.1365-2486.2006.01133.x |
[58] | Pasari, J.R., Levi, T., Zavaleta, E.S. and Tilman, D. (2013) Several Scales of Biodiversity Affect Ecosystem Multi-functionality. Proceedings of the National Academy of Sciences, 110, 10219-10222. https://doi.org/10.1073/pnas.1220333110 |