|
秦岭太白红杉径向生长对气候响应的时间稳定性研究
|
Abstract:
随着树轮气候学的发展,研究发现树轮指标在时间上对气候因子的响应存在着不稳定性,即“分异问题(Divergence problem)”:随着全球气候变暖的加剧,树木生长对气候的响应关系会发生改变。本研究基于采样区附近平原、山地气象站共存的现状,首先运用皮尔逊相关分析法探析太白红杉差值年表与气候要素的响应关系,探讨不同站点器测数据对太白红杉(Larix chinensis)树轮–气候响应关系研究的影响,随后优选出相关性最高的气象数据,将气象数据分解成前25年(1960~1984年)与后25年(1985~2009年)两组,判断太白红杉树轮–气候响应的时间稳定性。结果发现:选择不同气象站的气象数据对树轮–气候关系研究会产生影响,太白红杉在不同时间段对气候的响应模式存在显著差异性,印证了秦岭地区树轮–气候响应也存在时间上的不稳定性,即“分异问题”是客观存在的,由此可知,伴随着全球气候变暖,秦岭太白山自然保护区太白红杉的径向生长在不同时间段对于气候要素的响应特征、响应模式存在显著分异。
With the development of dendroclimatology, research has revealed the instability of the response of tree-ring indicators to climate factors over time, namely the “Divergence problem”: as global warming intensifies, the response relationship between tree growth and climate changes. Based on the co-existence of plain and mountain meteorological stations near the sampling area, this study first uses the Pearson correlation analysis method to explore the response relationship between the residual chronology of Larix chinensis and climate elements, and discusses the impact of instrumental data from different stations on the study of the tree ring-climate response relationship of Larix chinensis. Subsequently, the meteorological data with the highest correlation is selected, and the meteorological data is divided into two groups: the early 25-year period (1960~1984) and the later 25-year period (1985~2009) to determine the temporal stability of the tree ring climate response of Larix chinensis. The results show that the selection of meteorological data from different meteorological stations has an impact on the study of the tree ring climate relationship. There are significant differences in the response patterns of Larix chinensis to climate in different time periods, confirming that there is also temporal instability in the tree ring climate response in the Qinling region, that is, the “Divergence problem” objectively exists. It can be seen that with global warming, the radial growth of Larix chinensis in the Taibai Mountain Nature Reserve in the Qinling Mountains has significant differences in response characteristics and response patterns to climate elements in different time periods.
[1] | Dai, A. (2012) Increasing Drought under Global Warming in Observations and Models. Nature Climate Change, 3, 52-58. https://doi.org/10.1038/nclimate1633 |
[2] | Konisky, D.M., Hughes, L. and Kaylor, C.H. (2015) Extreme Weather Events and Climate Change Concern. Climatic Change, 134, 533-547. https://doi.org/10.1007/s10584-015-1555-3 |
[3] | 陈禹衡, 吕一维, 殷晓洁. 气候变化下西南地区12种常见针叶树种适宜分布区预测[J]. 南京林业大学学报(自然科学版), 2019, 43(6): 113-120. |
[4] | Grimm, N.B., Chapin, F.S., Bierwagen, B., Gonzalez, P., Groffman, P.M., Luo, Y., et al. (2013) The Impacts of Climate Change on Ecosystem Structure and Function. Frontiers in Ecology and the Environment, 11, 474-482. https://doi.org/10.1890/120282 |
[5] | Wolkovich, E.M., Cook, B.I., Allen, J.M., Crimmins, T.M., Betancourt, J.L., Travers, S.E., et al. (2012) Warming Experiments Underpredict Plant Phenological Responses to Climate Change. Nature, 485, 494-497. https://doi.org/10.1038/nature11014 |
[6] | 王叶, 延晓冬. 全球气候变化对中国森林生态系统的影响[J]. 大气科学, 2006, 30(5): 1009-1018. |
[7] | Esper, J., Cook, E.R. and Schweingruber, F.H. (2002) Low-Frequency Signals in Long Tree-Ring Chronologies for Reconstructing Past Temperature Variability. Science, 295, 2250-2253. https://doi.org/10.1126/science.1066208 |
[8] | 白红英, 马新萍, 高翔, 等. 基于DEM的秦岭山地1月气温及0℃等温线变化[J]. 地理学报, 2012, 67(11): 1443-1450. |
[9] | 邵雪梅, 吴祥定. 华山树木年轮年表的建立[J]. 地理学报, 1994, 49(2): 174-181. |
[10] | 康永祥, 刘婧辉, 代拴发, 等. 太白山不同海拔太白红杉年轮生长对气候变化的响应[J]. 西北农林科技大学学报: 自然科学版, 2010, 38(12): 141-147. |
[11] | Yan, B., Yu, J., Liu, Q., Wang, L. and Hu, L. (2018) Tree-Ring Response of Larix Chinensis on Regional Climate and Sea-Surface Temperature Variations in Alpine Timberline in the Qinling Mountains. Journal of Forestry Research, 31, 209-218. https://doi.org/10.1007/s11676-018-0841-0 |
[12] | 闫伯前, 林万众, 刘琪璟, 等. 秦岭鳌山太白红杉径向生长对气候因子的响应[J]. 南京林业大学学报: 自然科学版, 2018, 42(6): 61-67. |
[13] | Dang, H., Jiang, M., Zhang, Q. and Zhang, Y. (2007) Growth Responses of Subalpine Fir (Abies fargesii) to Climate Variability in the Qinling Mountain, China. Forest Ecology and Management, 240, 143-150. https://doi.org/10.1016/j.foreco.2006.12.021 |
[14] | Liu, Y., Linderholm, H.W., Song, H., Cai, Q., Tian, Q., Sun, J., et al. (2009) Temperature Variations Recorded in Pinus tabulaeformis Tree Rings from the Southern and Northern Slopes of the Central Qinling Mountains, Central China. Boreas, 38, 285-291. https://doi.org/10.1111/j.1502-3885.2008.00065.x |
[15] | 戴君虎, 邵雪梅, 崔海亭, 等. 太白山树木年轮宽度资料对过去生态气候要素的重建[J]. 第四纪研究, 2003, 23(4): 428-435. |
[16] | Chen, F., Yuan, Y., Wei, W., Yu, S., Shang, H., Zhang, T., et al. (2014) Tree-Ring Based Temperature Reconstruction for the West Qinling Mountains (China): Linkages to the High Asia, Solar Activity and Pacific-Atlantic Ocean. Geochronometria, 41, 234-244. https://doi.org/10.2478/s13386-013-0159-9 |
[17] | Hu, Y., Bao, G., Liu, N. and Qu, Y. (2018) May-July Mean Minimum Temperature Variability in the Mid-Qinling Mountains, Central China, since 1814 Ce. Quaternary International, 476, 102-109. https://doi.org/10.1016/j.quaint.2018.02.012 |
[18] | 盖学瑞, 于大炮, 王守乐, 等. 树轮-气候“分异问题”形成机制的研究进展[J]. 生态学杂志, 2017, 36(11): 3273-3280. |
[19] | Jiao, L., Jiang, Y., Zhang, W., Wang, M., Wang, S. and Liu, X. (2019) Assessing the Stability of Radial Growth Responses to Climate Change by Two Dominant Conifer Trees Species in the Tianshan Mountains, Northwest China. Forest Ecology and Management, 433, 667-677. https://doi.org/10.1016/j.foreco.2018.11.046 |
[20] | Cao, J., Liu, H., Zhao, B., Li, Z., Drew, D.M. and Zhao, X. (2019) Species-Specific and Elevation-Differentiated Responses of Tree Growth to Rapid Warming in a Mixed Forest Lead to a Continuous Growth Enhancement in Semi-Humid Northeast Asia. Forest Ecology and Management, 448, 76-84. https://doi.org/10.1016/j.foreco.2019.05.065 |
[21] | 张凌楠, 江源, 张文涛, 等. 树轮-气候响应研究中气象数据选择探究——以贺兰山油松为例[J]. 北京师范大学学报: 自然科学版, 2014(4): 402-406. |
[22] | 张彦军, 郁耀闯, 牛俊杰, 等. 秦岭太白山北坡土壤有机碳储量的海拔梯度格局[J]. 生态学报, 2020, 40(2): 629-639. |
[23] | Qin, J., Bai, H., Su, K., Liu, R., Zhai, D., Wang, J., et al. (2018) Comparison of Instrumental and Interpolated Meteorological Data-Based Summer Temperature Reconstructions on MT. Taibai in the Qinling Mountains, Northwestern China. Theoretical and Applied Climatology, 133, 633-645. https://doi.org/10.1007/s00704-018-2394-8 |
[24] | Fritts, H.C. (1976) Tree Rings and Climate. Academic Press. |
[25] | Stokes, M.A. and Smiley, T.L. (1968) An Introduction to Tree Ring Dating. The University of Chicago Press. |
[26] | Holmes, R.L. (1994) Dendrochronology Program Library Users Manual. Laboratory of Tree-Ring Research, University of Arizona. |
[27] | Cook, E.R. (1985) A Time Series Analysis Approach to Tree Ring Standardization. University of Arizona. |
[28] | Cook, E.R., Shiyatov, S. and Mazepa, V. (1990) Estimation of the Mean Chronology. In: Cook, E.R. and Kairiukstis, L.A., Eds., Methods of Dendrochronology: Applications in the Environmental Sciences, Kluwer Academic Publishers, 123-132. |
[29] | 何军, 姚选平. 秦岭山地降水的若干特征[J]. 陕西气象, 1996(5): 22-23. |
[30] | 于健, 林万众, 闫伯前, 等. 基于树木年轮重建秦岭太白山1872年以来6~8月最低温度变化[J]. 第四纪研究, 2018, 38(4): 971-980. |
[31] | 闫伯前, 林万众, 刘琪璟, 等. 秦岭不同年龄太白红杉径向生长对气候因子的响应[J]. 北京林业大学学报, 2017, 39(9): 58-65. |
[32] | 刘荣娟. 气候变化背景下秦岭太白红杉的时空响应[D]: [硕士学位论文]. 西安: 西北大学, 2016. |
[33] | 郭少壮, 白红英, 黄晓月, 等. 秦岭太白红杉林遥感物候提取及对气候变化的响应[J]. 生态学杂志, 2019, 38(4): 1123-1132. |