全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

干旱胁迫对阔叶木本植物光合能力影响的研究进展
Research Progress on the Effect of Drought Stress on the Photosynthetic Capacity of Broad-Leaved Woody Plants

DOI: 10.12677/wjf.2025.142015, PP. 126-133

Keywords: 干旱胁迫,光合作用,气孔,光合色素,叶绿素荧光
Drought Stress
, Photosynthesis, Stomata, Photosynthetic Pigments, Chlorophyll Fluorescence

Full-Text   Cite this paper   Add to My Lib

Abstract:

在全球气候变化背景下干旱胁迫对阔叶木本植物光合能力的影响日益引起关注。研究表明,干旱胁迫的增强不仅改变了生态系统的碳收支与水循环,也显著影响了植物的光合作用效率。这些影响主要通过气孔的关闭、叶绿素含量的降低以及光合电子传递链的阻碍体现出来,导致净光合速率和气孔导度的下降。但不同物种对干旱胁迫的敏感性与适应能力各异,部分植物能够通过提高水分利用效率、调整光合色素含量及优化电子传递路径来缓解此类逆境的负面效应。此外,阔叶木本植物表现出多层面的适应策略,包括叶片解剖结构的重塑、气孔的精细调节、光合色素的动态平衡以及抗氧化系统的激活,以维护其光合活性并增强抗旱能力。为深入探讨干旱胁迫与植被光合功能之间的关系,建议结合气体交换测定、叶绿素荧光成像、代谢组学分析及遥感技术等方法,提升研究的精确度。然而,现有文献对水力特性如何调控光合作用尚缺乏系统性探讨,长期监测数据亦显不足。未来研究可考虑整合同位素示踪技术、代谢重塑机理及机器学习模型,以深入理解植物在干旱条件下的耐受机制,并提升在全球变化大背景下的植被光合功能预测能力。
The impact of drought stress on the photosynthetic capacity of broad-leaved woody plants has garnered increasing scholarly attention, particularly in relation to global climate change. Research indicates that intensified drought stress not only disrupts the carbon balance and hydrological cycle within ecosystems but also significantly diminishes the photosynthetic efficiency of plants. Such effects are primarily evidenced by the closure of stomata, the reduction in chlorophyll content, and the impairment of the photosynthetic electron transport chain, all of which contribute to a decline in net photosynthetic rate and stomatal conductance. Nevertheless, different species exhibit varying degrees of sensitivity and adaptability to drought stress, with some plants capable of alleviating the adverse effects of such conditions through enhanced water use efficiency, adjustments in photosynthetic pigment concentrations, and optimization of electron transport pathways. Furthermore, broad-leaved woody plants demonstrate a range of adaptive strategies, including the remodeling of leaf anatomy, precise regulation of stomatal function, dynamic balance of photosynthetic pigments, and the activation of antioxidant systems, to sustain their photosynthetic activity and improve their tolerance to drought. To thoroughly investigate the relationship between drought stress and vegetative photosynthetic function, it is advisable to employ a combination of gas exchange measurements, chlorophyll fluorescence imaging, metabolomics analysis, and remote sensing techniques to enhance the precision of the research. Nonetheless, there remains a paucity of systematic examination concerning the regulatory role of hydraulic properties in photosynthesis within the existing literature, and long-term monitoring data is also inadequate. Future investigations might consider integrating isotope tracer technology, metabolic remodeling mechanisms, and machine learning models to gain a more profound understanding of the tolerance mechanisms of

References

[1]  Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., et al. (2010) A Global Overview of Drought and Heat-Induced Tree Mortality Reveals Emerging Climate Change Risks for Forests. Forest Ecology and Management, 259, 660-684.
https://doi.org/10.1016/j.foreco.2009.09.001
[2]  李玉恒, 张铃悦, 黄惠倩, 等. 北方农牧交错区农户干旱风险感知及其适应策略研究: 以陕西省榆阳区为例[J]. 农业资源与环境学报, 2024, 41(5): 1201-1210.
[3]  Budak, H., Kantar, M. and Yucebilgili Kurtoglu, K. (2013) Drought Tolerance in Modern and Wild Wheat. The Scientific World Journal, 2013, Article ID: 548246.
https://doi.org/10.1155/2013/548246
[4]  Wang, Q., Yang, Y., Liu, Y., Tong, L., Zhang, Q. and Li, J. (2019) Assessing the Impacts of Drought on Grassland Net Primary Production at the Global Scale. Scientific Reports, 9, Article No. 14041.
https://doi.org/10.1038/s41598-019-50584-4
[5]  Green, J.K., Seneviratne, S.I., Berg, A.M., Findell, K.L., Hagemann, S., Lawrence, D.M., et al. (2019) Large Influence of Soil Moisture on Long-Term Terrestrial Carbon Uptake. Nature, 565, 476-479.
https://doi.org/10.1038/s41586-018-0848-x
[6]  Schwalm, C.R., Anderegg, W.R.L., Michalak, A.M., Fisher, J.B., Biondi, F., Koch, G., et al. (2017) Global Patterns of Drought Recovery. Nature, 548, 202-205.
https://doi.org/10.1038/nature23021
[7]  翁白莎, 严登华. 变化环境下中国干旱综合应对措施探讨[J]. 资源科学, 2010, 32(2): 309-316.
[8]  魏娜, 仇亚琴, 甘泓, 等. WWF水风险评估工具在中国的应用研究——以长江流域为例[J]. 自然资源学报, 2015, 30(3): 502-512.
[9]  唐星林, 周本智, 周燕, 等. 基于FvCB模型的几种草本和木本植物光合生理生化特性[J]. 应用生态学报, 2017, 28(5): 1482-1488.
[10]  李天翔, 肖亚琴, 曹基武, 等. 干旱对不同种源花榈木幼苗生长及生理生化的影响[J]. 中南林业科技大学学报, 2024, 44(12): 86-96.
[11]  裴斌, 张光灿, 张淑勇, 等. 土壤干旱胁迫对沙棘叶片光合作用和抗氧化酶活性的影响[J]. 生态学报, 2013, 33(5): 1386-1396.
[12]  许大全. 新编光合作用学[M]. 上海: 上海科学技术出版社, 2022.
[13]  Corak, N.K., Otkin, J.A., Ford, T.W. and Lowman, L.E.L. (2024) Unraveling Phenological and Stomatal Responses to Flash Drought and Implications for Water and Carbon Budgets. Hydrology and Earth System Sciences, 28, 1827-1851.
https://doi.org/10.5194/hess-28-1827-2024
[14]  王露露, 王晓林, 刘喆宇, 等. 干旱胁迫训练对党参多糖积累及抗旱性的影响[J]. 中国中药杂志, 2025, 50(3): 672-681.
[15]  Shi, C., Fu, Y., Guo, Y., Ma, Y., Li, S., Lin, J., et al. (2022) Comparative Effects of Water Potential Stress Induced by Salt, Alkali and Drought on Photosynthetic Electron Transport and Apparatus in Hordeum Jubatum Seedlings. Crop & Pasture Science, 74, 324-333.
https://doi.org/10.1071/cp22202
[16]  张珊珊, 康洪梅, 杨文忠, 等. 干旱胁迫下amf对云南蓝果树幼苗生长和光合特征的影响[J]. 生态学报, 2016, 36(21): 6850-6862.
[17]  侯立伟, 鲁绍伟, 李少宁, 等. 城市绿化灌木耐旱性评价及灌溉制度研究进展[J]. 世界林业研究, 2023, 36(1): 45-51.
[18]  冯潇, 田玲, 尹群, 等. 3种玉兰幼苗生长和生理特性对干旱胁迫的响应[J]. 北京林业大学学报, 2024, 46(9): 57-67.
[19]  李民青, 周孝明, 王双龙, 等. 干旱胁迫下乔木状沙拐枣枝干光合对水力性状与叶片光合的影响[J]. 植物生态学报, 2024, 48(11): 15-24.
[20]  郭华, 秦聪, 石美娟, 等. 苹果幼树生理指标对土壤水分调控的响应研究[J]. 节水灌溉, 2021(6): 43-47.
[21]  高钿惠. 干旱及复水对小叶杨幼苗生长和碳氮代谢的影响[D]: [硕士学位论文]. 晋中: 山西农业大学, 2022.
[22]  潘彩玲. 4个奇楠沉香品系嫁接苗早期生长与干旱胁迫生理响应研究[D]: [硕士学位论文]. 南宁: 广西大学, 2024.
[23]  张志山, 韩高玲, 霍建强, 等. 固沙灌木柠条锦鸡儿和中间锦鸡儿木质部导水与叶片光合能力对土壤水分的响应[J]. 植物生态学报, 2023, 47(10): 1422-1431.
[24]  王明国, 王雅婷, 刘开琳, 等. 干旱胁迫对核桃幼苗光合作用的影响[J]. 防护林科技, 2025(1): 47-50.
[25]  柴成武, 王方琳, 赵鹏, 等. 干旱胁迫对沙蒿叶片水分含量、光合特性及抗氧化酶的影响[J]. 西北林学院学报, 2025, 40(1): 42-50.
[26]  Teskey, R.O., Fites, J.A., Samuelson, L.J. and Bongarten, B.C. (1986) Stomatal and Nonstomatal Limitations to Net Photosynthesis in Pinus taeda L. under Different Environmental Conditions. Tree Physiology, 2, 131-142.
https://doi.org/10.1093/treephys/2.1-2-3.131
[27]  刘孟雨, 陈培元. 水分胁迫条件下气孔与非气孔因素对小麦光合的限制[J]. 植物生理学通讯, 1990, 26(4): 24-27.
[28]  马常钦. 水曲柳雌雄株复叶功能性状对不同生境的响应[D]: [硕士学位论文]. 哈尔滨: 东北林业大学, 2022.
[29]  尚佳州. 氮添加下不同抗旱性杨树幼苗的碳-氮关系响应机理研究[D]: [硕士学位论文]. 晋中: 山西农业大学, 2023.
[30]  何芳兰, 赵明, 王继和, 等. 几种荒漠植物种子萌发对干旱胁迫的响应及其抗旱性评价研究[J]. 干旱区地理, 2011, 34(1): 100-106.
[31]  游丽霞, 刘熳熳, 赵韦颖, 等. 珠海淇澳岛红树林凋落物产量动态及碳氮储量[J/OL]. 生态学杂志, 2024: 1-13.
http://kns.cnki.net/kcms/detail/21.1148.Q.20241129.0850.002.html, 2025-02-01.
[32]  Toups, H.S., Cochetel, N., Deluc, L. and Cramer, G.R. (2022) Abscisic Acid Metabolism Pathways Differ between Grapevine Species, Leaves, and Roots during Water Deficit. OENO One, 56, 125-137.
https://doi.org/10.20870/oeno-one.2022.56.4.5483
[33]  Li, S., Liu, S., Zhang, Q., Cui, M., Zhao, M., Li, N., et al. (2022) The Interaction of ABA and ROS in Plant Growth and Stress Resistances. Frontiers in Plant Science, 13, Article 1050132.
https://doi.org/10.3389/fpls.2022.1050132
[34]  李阳, 齐曼·尤努斯, 安萍. 渗透胁迫对新疆大果沙枣幼苗叶片膜脂过氧化及膜保护酶的影响[J]. 新疆农业大学学报, 2005, 28(2): 47-50.
[35]  李芳兰, 包维楷. 植物叶片形态解剖结构对环境变化的响应与适应[J]. 植物学通报, 2005, 22(S1): 118-127.
[36]  张永强, 毛学森, 孙宏勇, 等. 干旱胁迫对冬小麦叶绿素荧光的影响[J]. 中国生态农业学报, 2002, 10(4): 17-19.
[37]  吴雨桦, 周燕, 李丕军, 等. 五个核桃品种对干旱胁迫的生理生化响应[J]. 四川林业科技, 2024, 45(4): 26-37.
[38]  鲍佳美. 施氮和干旱胁迫对蒙古栎幼苗生理生态特性的影响[D]: [硕士学位论文]. 沈阳: 沈阳农业大学, 2022.
[39]  张木清, 余松烈. 水分胁迫下蔗叶活性氧代谢的数学分析[J]. 作物学报, 1996, 22(6): 729-735.
[40]  耿晓东, 岳继飞, 刘英, 等. ‘豫济’山桐子幼苗生长对干旱胁迫的响应[J/OL]. 经济林研究, 2025: 1-12.
http://kns.cnki.net/kcms/detail/43.1117.S.20250122.1049.002.html, 2025-02-01.
[41]  李少卡, 张世青, 颜彩缤, 等. 干旱胁迫诱导菠萝蜜裂皮病发生的生理基础研究[J]. 中国热带农业, 2024(2): 35-43.
[42]  郝玄瑞, 姜妍, 王宇倩, 等. 杨树PtoXTH34基因过表达提高烟草抗旱性[J]. 北京林业大学学报, 2025, 47(1): 63-71.
[43]  高登涛. 苹果矮化砧木m9t337对干旱胁迫响应机制及预警指标体系建立[D]: [博士学位论文]. 石河子: 石河子大学, 2022.
[44]  孙宜, 孙猛, 王扬, 等. 3个紫薇品种形态和生理特性对干旱胁迫的响应[J]. 贵州农业科学, 2023, 51(12): 93-102.
[45]  彭心雨, 邵陈禹, 李鑫, 等. 干旱协同遮阴对红茶和白茶滋味香气的影响[J]. 食品安全质量检测学报, 2025, 16(1): 275-283.
[46]  Huang, X., Chu, G., Wang, J., Luo, H., Yang, Z., Sun, L., et al. (2023) Integrated Metabolomic and Transcriptomic Analysis of Specialized Metabolites and Isoflavonoid Biosynthesis in Sophora alopecuroides L. under Different Degrees of Drought Stress. Industrial Crops and Products, 197, Article 116595.
https://doi.org/10.1016/j.indcrop.2023.116595
[47]  王东清, 马丽慧, 张蕾蕾. 干旱风沙区不同林龄柠条锦鸡儿水分利用特征研究[J]. 贵州农业科学, 2024, 52(11): 109-115.
[48]  程强, 刘雨欣, 杨涵青, 等. 面向作物干旱胁迫诊断的表型成像技术研究进展[J]. 农业工程学报, 2024, 40(20): 1-11.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133