全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于SrSeO3基质三价Bi3+,Ce3+和Eu3+离子掺杂的发光晶体化合物的制备、结构与光致发光性能研究
Investigation of the Synthesis, Structure, and Photoluminescent Properties of Trivalent Bi3+, Ce3+ and Eu3+ Ions-Doped SrSeO3 Phosphors

DOI: 10.12677/oe.2025.151002, PP. 11-21

Keywords: SrSeO3,Bi3+,Ce3+,Eu3+,光致发光
SrSeO3
, Bi3+, Ce3+, Eu3+, Photoluminescence

Full-Text   Cite this paper   Add to My Lib

Abstract:

发光晶体化合物在诸如照明与显示、光信息安全、生物医疗等领域已有广泛应用。文章通过高温固相法成功合成了基于SrSeO3基质Bi3+、Eu3+和Ce3+离子掺杂的发光晶体化合物。通过X射线衍射分析发现样品均属于具有正交晶系结构的SrSeO3晶体,空间群为Pnma (62),并且Bi3+、Eu3+和Ce3+倾向于取代[SrO9]中的Sr2+格位。常温光致光谱的测试表明,紫外光可有效激发Bi3+、Ce3+和Eu3+掺杂SrSeO3样品,分别发射出可归属于3P11S0 (Bi3+)、5d → 4F (Ce3+)和5D07Fj (Eu3+)的特征发射峰。此外,基于荧光衰减曲线测试的结果,发现SrSeO3基质与掺杂离子间存在能量传递。据此,构建了机理模型对样品可能存在的发光来源进行了分析。
Luminescent crystal compounds have been widely applied in various fields, including but not limited to lighting and display, optical information security, and biomedical purposes. In this work, a series of luminescent crystal compounds that used the SrSeO3 as the host matrix for trivalent Bi3+, Eu3+, and Ce3+ ions doping were successfully synthesized using the high-temperature solid-state reaction method. The X-ray diffraction results indicated that the as-obtained samples belong to an orthorhombic-phased SrSeO3 crystal with a space group of Pnma (62), and the Bi3+, Eu3+, and Ce3+ dopants show a preferential substitution for Sr2+ sites in the [SrO9] polyhedra. Room temperature photoluminescent spectra revealed that the Bi3+, Ce3+, and Eu3+ doped SrSeO3 samples can be effectively excited with ultraviolet light, showing the emission spectra that can be attributed respectively to the characteristic transitions of 3P11S0 for Bi3+, 5d → 4F for Ce3+, and 5D07Fj for Eu3+. Besides, based on the measured fluorescent decay curves and their fitting results, an energy transfer from the SrSeO3 host matrix to the Bi3+, Eu3+, and Ce3+ dopants was revealed. Accordingly, a feasible mechanism that can be used to explain the possible luminescent origin was established.

References

[1]  Ye, S., Xiao, F., Pan, Y.X., Ma, Y.Y. and Zhang, Q.Y. (2010) Phosphors in Phosphor-Converted White Light-Emitting Diodes: Recent Advances in Materials, Techniques and Properties. Materials Science and Engineering: R: Reports, 71, 1-34.
https://doi.org/10.1016/j.mser.2010.07.001
[2]  Nair, G.B., Swart, H.C. and Dhoble, S.J. (2020) A Review on the Advancements in Phosphor-Converted Light Emitting Diodes (pc-LEDs): Phosphor Synthesis, Device Fabrication and Characterization. Progress in Materials Science, 109, Article ID: 100622.
https://doi.org/10.1016/j.pmatsci.2019.100622
[3]  Wei, Y., Cheng, Z. and Lin, J. (2019) An Overview on Enhancing the Stability of Lead Halide Perovskite Quantum Dots and Their Applications in Phosphor-Converted LEDs. Chemical Society Reviews, 48, 310-350.
https://doi.org/10.1039/c8cs00740c
[4]  Fang, M., Bao, Z., Huang, W. and Liu, R. (2022) Evolutionary Generation of Phosphor Materials and Their Progress in Future Applications for Light-Emitting Diodes. Chemical Reviews, 122, 11474-11513.
https://doi.org/10.1021/acs.chemrev.1c00952
[5]  Wang, L., Xie, R., Suehiro, T., Takeda, T. and Hirosaki, N. (2018) Down-Conversion Nitride Materials for Solid State Lighting: Recent Advances and Perspectives. Chemical Reviews, 118, 1951-2009.
https://doi.org/10.1021/acs.chemrev.7b00284
[6]  Riechert, H. (2015) Lighting the 21st Century. Physica Status Solidi (A), 212, 893-896.
https://doi.org/10.1002/pssa.201570434
[7]  Cho, J., Park, J.H., Kim, J.K. and Schubert, E.F. (2017) White Light‐Emitting Diodes: History, Progress, and Future. Laser & Photonics Reviews, 11, Article ID: 1600147.
https://doi.org/10.1002/lpor.201600147
[8]  Schubert, E.F. and Kim, J.K. (2005) Solid-State Light Sources Getting Smart. Science, 308, 1274-1278.
https://doi.org/10.1126/science.1108712
[9]  Zhang, Y., Chen, B., Zhang, X., Cao, Y., Zhang, J., Xu, S., et al. (2023) Sn2+/Mn2+ Co-Doped Germanate Glass with Quasi-Sunlight Spectrum Visible-Emission and Its High-Quality W-Led Application. Chemical Engineering Journal, 467, Article ID: 143467.
https://doi.org/10.1016/j.cej.2023.143467
[10]  Wu, H., Zhang, B., Zou, X., Molokeev, M.S., Zhang, X., Wang, Z., et al. (2024) Thermal Stability Enhancement of an Mn4+-Activated Germanate Phosphor by a Cationic Non-Equivalent Substitution Strategy. Journal of Materials Chemistry C, 12, 15924-15933.
https://doi.org/10.1039/d4tc02903h
[11]  Wei, Y., Xing, G., Liu, K., Li, G., Dang, P., Liang, S., et al. (2019) New Strategy for Designing Orangish-Red-Emitting Phosphor via Oxygen-Vacancy-Induced Electronic Localization. Light: Science & Applications, 8, Article No. 15.
https://doi.org/10.1038/s41377-019-0126-1
[12]  Ji, C., Huang, Z., Tian, X., He, H., Wen, J. and Peng, Y. (2020) Novel Red Emitting Phosphors Mg3Y2Ge3O12:Sm3+ with High Color Purity and Excellent Thermal Stability Used in W-LEDs. Journal of Alloys and Compounds, 825, Article ID: 154176.
https://doi.org/10.1016/j.jallcom.2020.154176
[13]  Dang, P., Li, G., Yun, X., Zhang, Q., Liu, D., Lian, H., et al. (2021) Thermally Stable and Highly Efficient Red-Emitting Eu3+-Doped Cs3GdGe3O9 Phosphors for WLEDs: Non-Concentration Quenching and Negative Thermal Expansion. Light: Science & Applications, 10, Article No. 29.
https://doi.org/10.1038/s41377-021-00469-x
[14]  Liu, X., Qian, X., Zheng, P., Hu, Z., Chen, X., Pan, H., et al. (2019) Preparation and Optical Properties of MgAl2O4-Ce:GdYAG Composite Ceramic Phosphors for White LEDs. Journal of the European Ceramic Society, 39, 4965-4971.
https://doi.org/10.1016/j.jeurceramsoc.2019.07.027
[15]  Muley, A., Dhoble, S.B., Ramesh, P., Yadav, R.S. and Dhoble, S.J. (2022) Recent Development of Aluminate Materials for Solid State Lighting. Progress in Solid State Chemistry, 66, Article ID: 100347.
https://doi.org/10.1016/j.progsolidstchem.2022.100347
[16]  Xue, B., Hu, L., Xiong, P., Xia, H. and Lu, B. (2023) Effects of Activator Oxidation Number and Matrix Composition on Structure Feature, Microscopic Morphology, and Luminescence Behavior of Blue-Emitting (Gd, Y)3Al5O12:Bi Phosphors. Journal of Luminescence, 257, Article ID: 119737.
https://doi.org/10.1016/j.jlumin.2023.119737
[17]  Wang, B., Lin, H., Huang, F., Xu, J., Chen, H., Lin, Z., et al. (2016) Non-Rare-Earth BaMgAl10–2xO17:xMn4+, xMg2+: A Narrow-Band Red Phosphor for Use as a High-Power Warm W-LED. Chemistry of Materials, 28, 3515-3524.
https://doi.org/10.1021/acs.chemmater.6b01303
[18]  Yang, J., Yuan, L., Qian, D., Wu, H. and Jin, Y. (2024) Highly Thermal-Stable Broadband Near-Infrared Emission of Cr3+ Doped Spinel CdGa2O4 Phosphors. Journal of Luminescence, 275, Article ID: 120825.
https://doi.org/10.1016/j.jlumin.2024.120825
[19]  Zhu, X., Wang, T., Liu, H., Nie, L., Zhao, F., Yu, S., et al. (2023) Achievement of Full-Visible-Spectrum Lighting in Bi3+-Activated Strontium Gallates via Lattice Site Occupancy Engineering toward WLEDs Applications. Materials Today Physics, 31, Article ID: 100968.
https://doi.org/10.1016/j.mtphys.2023.100968
[20]  He, C., Takeda, T., Huang, Z., Xu, J., Chen, J., Yi, W., et al. (2023) Powder Synthesis and Luminescence of a Novel Yellow-Emitting Ba5Si11Al7N25: Eu2+ Phosphor Discovered by a Single-Particle-Diagnosis Approach for Warm W-LEDs. Chemical Engineering Journal, 455, Article ID: 140932.
https://doi.org/10.1016/j.cej.2022.140932
[21]  Pust, P., Weiler, V., Hecht, C., Tücks, A., Wochnik, A.S., Henß, A.-K., Wiechert, D., et al. (2014) Narrow-Band Red-Emitting Sr[LiAl3N4]:Eu2+ as a Next-Generation LED-Phosphor Material. Nature Materials, 13, 891-896.
https://doi.org/10.1038/nmat4012
[22]  Takeda, T., Xie, R., Suehiro, T. and Hirosaki, N. (2018) Nitride and Oxynitride Phosphors for White LEDs: Synthesis, New Phosphor Discovery, Crystal Structure. Progress in Solid State Chemistry, 51, 41-51.
https://doi.org/10.1016/j.progsolidstchem.2017.11.002
[23]  Leskelä, M. and Hölsä, J. (1985) Thermal Stability of Eu3+ Activated Rare Earth Hydrogenselenites. Thermochimica Acta, 92, 489-491.
https://doi.org/10.1016/0040-6031(85)85922-0
[24]  Pinatti, I.M., Trench, A.B., Tello, A.C.M., Pereira, P.F.S., Souza, J.C., Teodoro, M.D., et al. (2021) Structure, Photoluminescence Emissions, and Photocatalytic Activity of Ag2seo3: A Joint Experimental and Theoretical Investigation. Inorganic Chemistry, 60, 5937-5954.
https://doi.org/10.1021/acs.inorgchem.1c00368
[25]  Kuhlmann, N. and Wickleder, C. (2023) Glowing Selenates: Novel Alkaline Earth Nanoparticles. RSC Advances, 13, 21225-21230.
https://doi.org/10.1039/d3ra01669b
[26]  Aralbayeva, G., Sarsekhan, G., Akylbekova, A., Vlasukova, L.A., Baimukhanov, Z., Yuvchenko, V., et al. (2024) The Thermal Stability and Photoluminescence of ZnSeO3 Nanocrystals Chemically Synthesized into SiO2/Si Track Templates. Crystals, 14, Article 730.
https://doi.org/10.3390/cryst14080730
[27]  Wildner, M. and Giester, G. (2007) Crystal Structures of SrSeO3 and CaSeO3 and Their Respective Relationships with Molybdomenite-and Monazite-Type Compounds an Example for Stereochemical Equivalence of ESeO3 Groups (E = Lone Electron Pair) with Tetrahedral TO4 Groups. Neues Jahrbuch für MineralogieAbhandlungen, 184, 29-37.
https://doi.org/10.1127/0077-7757/2007/0083
[28]  Lipp, C. and Schleid, T. (2008) Orthorhombisches Sr[SeO3]. Zeitschrift für anorganische und allgemeine Chemie, 634, 2060-2060.
https://doi.org/10.1002/zaac.200870104
[29]  Kang, F., Zhang, H., Wondraczek, L., Yang, X., Zhang, Y., Lei, D.Y., et al. (2016) Band-Gap Modulation in Single Bi3+-Doped Yttrium-Scandium-Niobium Vanadates for Color Tuning over the Whole Visible Spectrum. Chemistry of Materials, 28, 2692-2703.
https://doi.org/10.1021/acs.chemmater.6b00277
[30]  Kang, F., Yang, X., Peng, M., Wondraczek, L., Ma, Z., Zhang, Q., et al. (2014) Red Photoluminescence from Bi3+and the Influence of the Oxygen-Vacancy Perturbation in Scvo4: A Combined Experimental and Theoretical Study. The Journal of Physical Chemistry C, 118, 7515-7522.
https://doi.org/10.1021/jp4081965
[31]  Kang, F., Peng, M., Yang, X., Dong, G., Nie, G., Liang, W., et al. (2014) Broadly Tuning Bi3+ Emission via Crystal Field Modulation in Solid Solution Compounds (Y, Lu, Sc)VO4:Bi for Ultraviolet Converted White LEDs. Journal of Materials Chemistry C, 2, 6068-6076.
https://doi.org/10.1039/c4tc00238e
[32]  Kang, F., Peng, M., Zhang, Q. and Qiu, J. (2014) Abnormal Anti‐Quenching and Controllable Multi‐Transitions of Bi3+ Luminescence by Temperature in a Yellow‐emitting LuVo4:Bi3+ Phosphor for UV‐Converted White LEDs. ChemistryA European Journal, 20, 11522-11530.
https://doi.org/10.1002/chem.201402081
[33]  Kang, F., Peng, M., Lei, D.Y. and Zhang, Q. (2016) Recoverable and Unrecoverable Bi3+-Related Photoemissions Induced by Thermal Expansion and Contraction in LuVo4:Bi3+ and ScVo4:Bi3+ Compounds. Chemistry of Materials, 28, 7807-7815.
https://doi.org/10.1021/acs.chemmater.6b03062
[34]  Kang, F., Sun, G., Boutinaud, P., Gao, F., Wang, Z., Lu, J., et al. (2019) Tuning the Bi3+-Photoemission Color over the Entire Visible Region by Manipulating Secondary Cations Modulation in the ScVxP1−xO4:Bi3+ (0 ≤ x ≤ 1) Solid Solution. Journal of Materials Chemistry C, 7, 9865-9877.
https://doi.org/10.1039/c9tc01385g
[35]  Hu, T., Yu, J., Zeng, Q., Zhang, C., Teng, Y., Shao, K., et al. (2025) Ternary Afterglow and Dynamic Anti-Counterfeiting Applications of Self-Activated Zinc Germanate. Journal of Materials Chemistry C, 13, 81-92.
https://doi.org/10.1039/d4tc04090b
[36]  Yue, Y., Wang, T., Yan, Y., Guo, L., Zhu, X., Bu, W., et al. (2024) Nonstoichiometry-induced Self-Activated Phosphors for Dynamic Anti-Counterfeiting Applications. ACS Applied Materials & Interfaces, 16, 32402-32410.
https://doi.org/10.1021/acsami.4c04746
[37]  Wang, Y., Guo, N., Xin, Y., Li, J., Ouyang, R., Shao, B., et al. (2021) A Solid-Solution Modulation Strategy in Trivalent Bismuth-Doped Gallate Phosphors for Single Substrate Tunable Emission. Dalton Transactions, 50, 12592-12606.
https://doi.org/10.1039/d1dt02222a
[38]  Yu, X., Wang, S., Zhu, Y., Liang, J., Qiu, J., Xu, X., et al. (2017) High-Temperature Long Persistent and Photo-Stimulated Luminescence in Tb3+ Doped Gallate Phosphor. Journal of Alloys and Compounds, 701, 774-779.
https://doi.org/10.1016/j.jallcom.2017.01.210
[39]  Ren, J., Xu, X., Zeng, H., Chen, G., Kong, D., Gu, C., et al. (2014) Novel Self‐Activated Zinc Gallogermanate Phosphor: The Origin of Its Photoluminescence. Journal of the American Ceramic Society, 97, 3197-3201.
https://doi.org/10.1111/jace.13103
[40]  Han, J., Li, L., Peng, M., Huang, B., Pan, F., Kang, F., et al. (2017) Toward Bi3+ Red Luminescence with No Visible Reabsorption through Manageable Energy Interaction and Crystal Defect Modulation in Single Bi3+-Doped ZnWO4 Crystal. Chemistry of Materials, 29, 8412-8424.
https://doi.org/10.1021/acs.chemmater.7b02979
[41]  Kang, F. and Peng, M. (2014) A New Study on the Energy Transfer in the Color-Tunable Phosphor CaWO4:Bi. Dalton Trans., 43, 277-284.
https://doi.org/10.1039/c3dt51183a
[42]  Lu, Z., Sun, D., Lyu, Z., Shen, S., Luo, P., Wei, S., et al. (2023) Novel Color Tunable LaCaGaO4:Bi3+, Eu3+ Phosphors for High Color Rendering Warm White LEDs. Journal of the American Ceramic Society, 106, 6617-6629.
https://doi.org/10.1111/jace.19255
[43]  Sójka, M., Hariyani, S., Lee, N. and Brgoch, J. (2023) Colossal Chromatic Shift in the Ba2Ca2B4O10:Ce3+ Phosphor. Chemistry of Materials, 35, 6491-6501.
https://doi.org/10.1021/acs.chemmater.3c01465
[44]  Annadurai, G., Li, B., Devakumar, B., Guo, H., Sun, L. and Huang, X. (2019) Synthesis, Structural and Photoluminescence Properties of Novel Orange-Red Emitting Ba3Y2B6O15: Eu3+ Phosphors. Journal of Luminescence, 208, 75-81.
https://doi.org/10.1016/j.jlumin.2018.12.028
[45]  Raghupathi, P. and Jamalaiah, B.C. (2022) Li6AlGd(BO3)4: Sm3+ Phosphors for Orange-Red Light Sources. Optical Materials, 131, Article ID: 112702.
https://doi.org/10.1016/j.optmat.2022.112702
[46]  Farooq, M., Rafiq, H., Nazir, I., Tantray, A.M., Younis, H. and Rasool, M.H. (2025) Comparative Investigation of Structural, Morphological and Temperature-Dependent Photoluminescence Characteristics of Trivalent Rare-Earth-Activated NaCaPO4 Phosphors for Solid-State Lighting Applications. Journal of Luminescence, 277, Article ID: 120901.
https://doi.org/10.1016/j.jlumin.2024.120901

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133