Soil microorganisms are crucial to ecosystem functions and productivity by mediating biogeochemical cycles. However, different land-use changes and management practices in agriculture cropping systems have tremendously influenced their composition, diversity, and abundance, causing significant implications for soil health, plant productivity, and biodiversity. We investigated soil fungal community and diversity associated with land use changes in cocoa production systems amid climate change in Ghana and C?te d’Ivoire. In this study, we employed DNA metabarcoding using PacBio sequencing to examine fungal community composition and diversity by targeting the ITS region of fungi in soils collected from three cocoa agroforestry farms (5, 15 and 30 years old). The results revealed that the Ascomycota and Basidiomycota phyla dominated the communities. The classes Eurotiomycetes and Dothideomycetes prevailed in the soils of both countries. The 15- and 30-year-old cocoa agroforestry farms recorded the highest number of fungi in both countries, with the most abundant found in soils of Ghana within a depth of 15 - 30 cm. The results of this study reveal that the soils of this cocoa agroecosystem are dominated by the fungal genera Phialophora and Aureobasidium, which can be explored in future studies along with other mycorrhizal fungi regarding sustainable cocoa production under a changing climate in Ghana and C?te d’Ivoire.
References
[1]
Gavrilova, N. (2021) Contemporary Global Production and Consumption of Cocoa: An Assessment. IOP Conference Series: Earth and Environmental Science, 839, Article ID: 022095. https://doi.org/10.1088/1755-1315/839/2/022095
[2]
Lass, R.A. (1988) Review of Production and Consumption. Cocoa Growers’ Bulletin, Cadbury Ltd.
[3]
ICCO Secretariat International Cocoa Organization (2013) Growing Cocoa.Https://www.icco.org/about-cocoa/growing-cocoa.
[4]
Läderach, P., Martinez-Valle, A., Schroth, G. and Castro, N. (2013) Predicting the Future Climatic Suitability for Cocoa Farming of the World’s Leading Producer Countries, Ghana and Côte d’Ivoire. Climatic Change, 119, 841-854. https://doi.org/10.1007/s10584-013-0774-8
[5]
Schroth, G., Garcia, E., Griscom, B.W., Teixeira, W.G. and Barros, L.P. (2016) Commodity Production as Restoration Driver in the Brazilian Amazon? Pasture Re-Agro-Forestation with Cocoa (Theobroma cacao) in Southern Pará. Sustainability Science, 11, 277-293. https://doi.org/10.1007/s11625-015-0330-8
[6]
Bahrun, A., Fahimuddin, M., Rakian, T., Safuan, L. and Kilowasid, L.M.H. (2018) Cocoa Pod Husk Biochar Reduce Watering Frequency and Increase Cocoa Seedlings Growth. International Journal of Environment, Agriculture and Biotechnology, 3, 1635-1639. https://doi.org/10.22161/ijeab/3.5.9
[7]
Nair, P.K.R., Kumar, B.M. and Nair, V.D. (2009) Agroforestry as a Strategy for Carbon Sequestration. Journal of Plant Nutrition and Soil Science, 172, 10-23. https://doi.org/10.1002/jpln.200800030
[8]
Ruf, F., Schroth, G. and Doffangui, K. (2015) Climate Change, Cocoa Migrations and Deforestation in West Africa: What Does the Past Tell Us about the Future? Sustainability Science, 10, 101-111. https://doi.org/10.1007/s11625-014-0282-4
[9]
Somarriba, E., Cerda, R., Orozco, L., Cifuentes, M., Dávila, H., Espin, T., Mavisoy, H., Ávila, G., Alvarado, E., Poveda, V., Astorga, C., Say, E. and Deheuvels, O. (2013) Carbon Stocks and Cocoa Yields in Agroforestry Systems of Central America. Agriculture, Ecosystems and Environment, 173, 46-57. https://doi.org/10.1016/j.agee.2013.04.013
[10]
Edy, N., Zakaria, E.K., Lakani, I. and Hasriyanti (2019) Forest Conversion into Cacao Agroforestry and Cacao Plantation Change the Diversity of Arbuscular Mycorrhizal Fungi. IOP Conference Series: Earth and Environmental Science, 270, Article 012015. https://doi.org/10.1088/1755-1315/270/1/012015
[11]
Rice, R.A. and Greenberg, R. (2000) Cacao Cultivation and the Conservation of Biological Diversity. AMBIO: A Journal of the Human Environment, 29, 167-173. https://doi.org/10.1579/0044-7447-29.3.167
[12]
Liu, G., Bai, Z., Cui, G., He, W., Kongling, Z. and Ji, G. (2022) Effects of Land Use on the Soil Microbial Community in the Songnen Grassland of Northeast China. Frontiers in Microbiology, 13, Article 865184. https://doi.org/10.3389/fmicb.2022.865184
[13]
Zhang, W.W., Wang, C., Xue, R. and Wang, L.-J. (2019) Effects of Salinity on the Soil Microbial Community and Soil Fertility. Journal of Integrative Agriculture, 18, 1360-1368. https://doi.org/10.1016/S2095-3119(18)62077-5
[14]
Yu, K., Van Den Hoogen, J., Wang, Z.Q., Averill, C., Routh, D., Smith, G.R., Drenovsky, R.E., Scow, K.M., Mo, F., Waldrop, M.P., et al. (2022) The Biogeography of Relative Abundance of Soil Fungi Versus Bacteria in Surface Topsoil. Earth System Science Data, 14, 4339-4350. https://doi.org/10.5194/essd-14-4339-2022
[15]
Tchameni, S.N., Ngonkeu, M.E.L., Begoude, B.A.D., Wakam Nana, L., Fokom, R., Owona, A.D., Mbarga, J.B., Tchana, T., Tondje, P.R., Etoa, F.X. and Kuaté, J. (2011) Effect of Trichoderma asperellum and Arbuscular Mycorrhizal Fungi on Cacao Growth and Resistance against Black Pod Disease. Crop Protection, 30, 1321-1327. https://doi.org/10.1016/j.cropro.2011.05.003
[16]
Chulan (Hashim), A. and Ragu, P. (1986) Growth Response of Theobroma cacao L. Seeldings to Inoculation with Vesicular-Arbuscular Mycorrhizal Fungi. Plant and Soil, 96, 279-285. https://doi.org/10.1007/BF02374771
[17]
Chulan, H.A. and Martin, K. (1992) The Vesicular-Arbuscular (VA) Mycorrhiza and Its Effects on Growth of Vegetatively Propagated Theobroma cacao L. Plant and Soil, 144, 227-233. https://doi.org/10.1007/BF00012879
[18]
Ramírez, J.G., Osorno, L. and Osorio, N.W. (2016) Presence of Mycorrhizal Fungi and a Fluorescent Pseudomonas sp. in the Rhizosphere of Cacao in Two Agroecosystems and Their Effects on Cacao Seedling Growth. Agronomia Colombiana, 34, 385-392. https://doi.org/10.15446/agron.colomb.v34n3.57950
[19]
Oladele, S. (2015) Mycorrhizal Fungus (Glomus mossae) Inoculation Effects on Performance and Root Biomass Development of Cacao Seedlings in the Nursery. Agriculture & Forestry, 61, 69-76. https://doi.org/10.17707/AgricultForest.61.3.07
[20]
Luo, Y., Wei, X., Yang, S., Gao, Y.H. and Luo, Z.H. (2020) Fungal Diversity in Deep-sea Sediments from the Magellan Seamounts as Revealed by a Metabarcoding Approach Targeting the ITS2 Regions. Mycology, 11, 214-229. https://doi.org/10.1080/21501203.2020.1799878
[21]
Schmidt, J., Addo-Danso, S.D., Asare, R., Tettey, A. and Isaac, M.E. (2024) Soil Quality Reflects Microbial Resource Availability and Drives Rhizosphere Microbiome Variation in Ghanaian Cocoa Farms. Applied Soil Ecology, 198, Article 105378. https://doi.org/10.1016/j.apsoil.2024.105378
[22]
Bahram, M., Netherway, T., Frioux, C., Ferretti, P., Coelho, L.P., Geisen, S., Bork, P. and Hildebrand, F. (2021) Metagenomic Assessment of the Global Diversity and Distribution of Bacteria and Fungi. Environmental Microbiology, 23, 316-326. https://doi.org/10.1111/1462-2920.15314
[23]
Baldrian, P., Větrovský, T., Lepinay, C. and Kohout, P. (2022) High-Throughput Sequencing View on the Magnitude of Global Fungal Diversity. Fungal Diversity, 114, 539-547. https://doi.org/10.1007/s13225-021-00472-y
[24]
Tedersoo, L., Mikryukov, V., Anslan, S., Bahram, M., Nasir, A., et al. (2021) The Global Soil Mycobiome Consortium Dataset for Boosting Fungal Diversity Research. Fungal Diversity, 111, 573-588. https://doi.org/10.1007/s13225-021-00493-7
[25]
Nilsson, R.H., Anslan, S., Bahram, M., Wurzbacher, C., Baldrian, P. and Tedersoo, L. (2019) Mycobiome Diversity: High-Throughput Sequencing and Identification of Fungi. Nature Reviews Microbiology, 17, 95-109. https://doi.org/10.1038/s41579-018-0116-y
[26]
Tedersoo, L., Bahram, M., Põlme, S., Kõljalg, U., Yorou, N.S., Wijesundera, R., Ruiz, L.V., Vasco-Palacios, A.M., et al. (2014) Global Diversity and Geography of Soil Fungi. Science, 346, Article 1256688. https://doi.org/10.1126/science.1256688
[27]
Dawoe, E.K., Quashie-Sam, J.S. and Oppong, S.K. (2014) Effect of Land-Use Conversion from Forest to Cocoa Agroforest on Soil Characteristics and Quality of a Ferric Lixisol in Lowland Humid Ghana. Agroforestry Systems, 88, 87-99. https://doi.org/10.1007/s10457-013-9658-1
[28]
Food and Agriculture Organization of the United Nations (2006) World Reference Base for Soil Resources 2006: A Framework for International Classification, Correlation and Communication.
[29]
Ministry of Food and Agriculture (1998) National Fertility Management Action Plan.
[30]
Tedersoo, L. and Anslan, S. (2019) Towards PacBio-Based Pan-Eukaryote Metabarcoding Using Full-Length ITS Sequences. Environmental Microbiology Reports, 11, 659-668. https://doi.org/10.1111/1758-2229.12776
[31]
Tedersoo, L. and Lindahl, B. (2016) Fungal Identification Biases in Microbiome Projects. Environmental Microbiology Reports, 8, 774-779. https://doi.org/10.1111/1758-2229.12438
[32]
Shen, X.X., Zhou, X., Kominek, J., Kurtzman, C.P., Hittinger, C.T. and Rokas, A. (2016) Reconstructing the Backbone of the Saccharomycotina Yeast Phylogeny Using Genome-Scale Data. G3: Genes, Genomes, Genetics, 6, 3927-3939. https://doi.org/10.1534/g3.116.034744
[33]
Rivers, A.R., Weber, K.C., Gardner, T.G., Liu, S. and Armstrong, S.D. (2018) ITSxpress: Software to Rapidly Trim Internally Transcribed Spacer Sequences with Quality Scores for Marker Gene Analysis. F1000Research, 7, Article 1418. https://doi.org/10.12688/f1000research.15704.1
[34]
Rognes, T., Flouri, T., Nichols, B., Quince, C. and Mahé, F. (2016) VSEARCH: A Versatile Open Source Tool for Metagenomics. PeerJ, 4, e2584 https://doi.org/10.7717/peerj.2584
[35]
Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K. and Madden, T.L. (2009) BLAST+: Architecture and Applications. BMC Bioinformatics, 10, Article No. 421. https://doi.org/10.1186/1471-2105-10-421
[36]
Põlme, S., Abarenkov, K., Henrik Nilsson, R., Lindahl, B.D., Clemmensen, K.E., Kauserud, H., Nguyen, N., Kjøller, R., Bates, S.T., et al. (2021) Correction to: FungalTraits: A User Friendly Traits Database of Fungi and Fungus-Like Stramenopiles. Fungal Diversity, 107, 129-132. https://doi.org/10.1007/s13225-021-00470-0
[37]
Team, R.C. (2022) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/
[38]
Fick, S.E. and Hijmans, R.J. (2017) WorldClim 2: New 1-Km Spatial Resolution Climate Surfaces for Global Land Areas. International Journal of Climatology, 37, 4302-4315. https://doi.org/10.1002/joc.5086
[39]
Jackson, M.L. (1973) Soil Chemical Analysis. Prentice Hall of India Pvt. Ltd., 498.
[40]
Tedersoo, L., Naadel, T., Bahram, M., Pritsch, K., Buegger, F., Leal, M., Kõljalg, U. and Põldmaa, K. (2012) Enzymatic Activities and Stable Isotope Patterns of Ectomycorrhizal Fungi in Relation to Phylogeny and Exploration Types in an Afrotropical Rain Forest. New Phytologist, 195, 832-843. https://doi.org/10.1111/j.1469-8137.2012.04217.x
[41]
Tedersoo, L., Mikryukov, V., Zizka, A., Bahram, M., Hagh-Doust, N., Anslan, S., Prylutskyi, O., et al. (2022) Global Patterns in Endemicity and Vulnerability of Soil Fungi. Global Change Biology, 28, 6696-6710. https://doi.org/10.1111/gcb.16398
[42]
Oksanen, J., Simpson, G.L., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’Hara, R.B., Solymos, P., et al. (2022) Package ‘Vegan’ Title Community Ecology Package. The Comprehensive R Archive Network, 1-295.
[43]
Zhang, H., Wei, S., Hu, W., Xiao, L. and Tang, M. (2017) Arbuscular Mycorrhizal Fungus Rhizophagus irregularis Increased Potassium Content and Expression of Genes Encoding Potassium Channels in Lyciumbarbarum. Frontiers in Plant Science, 8, Article 440. https://doi.org/10.3389/fpls.2017.00440
[44]
Egidi, E., Delgado-Baquerizo, M., Plett, J.M., Wang, J., Eldridge, D.J., Bardgett, R.D., Maestre, F.T. and Singh, B.K. (2019) A Few Ascomycota Taxa Dominate Soil Fungal Communities Worldwide. Nature Communications, 10, Article No. 2369. https://doi.org/10.1038/s41467-019-10373-z
[45]
Kwodaga, J., Odamtten, G., Owusu, E. and Akrofi, A.Y. (2017) Effect of Four Copper-Based Fungicides on Soil Fungi in a Cocoa Farm at Tafo, Eastern Region, Ghana. 17, 55-76.
[46]
Nath, A., Raghunatha, P. and Joshi, S.R. (2012) Diversity and Biological Activities of Endophytic Fungi of Emblica officinalis, an Ethnomedicinal Plant of India. Mycobiology, 40, 8-13. https://doi.org/10.5941/MYCO.2012.40.1.008
[47]
Radhakrishnan, R., Khan, A.L., Kang, S.M. and Lee, I.J. (2015) A Comparative Study of Phosphate Solubilization and the Host Plant Growth Promotion Ability of Fusarium verticillioides RK01 and Humicola Sp. KNU01 under Salt Stress. Annals of Microbiology, 65, 585-593. https://doi.org/10.1007/s13213-014-0894-z
[48]
Arévalo-Gardini, E., Canto, M., Alegre, J., Arévalo-Hernández, C.O., Loli, O., Julca, A. and Baligar, V. (2020) Cacao Agroforestry Management Systems Effects on Soil Fungi Diversity in the Peruvian Amazon. Ecological Indicators, 115, Article 106404. https://doi.org/10.1016/j.ecolind.2020.106404
[49]
Wemheuer, F., Berkelmann, D., Wemheuer, B., Daniel, R., Vidal, S. and Bisseleua Daghela, H.B. (2020) Agroforestry Management Systems Drive the Composition, Diversity, and Function of Fungal and Bacterial Endophyte Communities in Theobroma Cacao Leaves. Microorganisms, 8, Article 405. https://doi.org/10.3390/microorganisms8030405
[50]
Guasconi, D., Juhanson, J., Clemmensen, K.E., Cousins, S.A.O., Hugelius, G., Manzoni, S., Roth, N. and Fransson, P. (2023) Vegetation, Topography, and Soil Depth Drive Microbial Community Structure in Two Swedish Grasslands. FEMS Microbiology Ecology, 99, fiad080. https://doi.org/10.1093/femsec/fiad080
[51]
Keizer, P.J. and Arnolds, E. (1994) Succession of Ectomycorrhizal Fungi in Roadside Verges Planted with Common Oak (Quercus robur L.) in Drenthe, The Netherlands. Mycorrhiza, 4, 147-159. https://doi.org/10.1007/BF00203533
[52]
Wallander, H., Johansson, U., Sterkenburg, E., Brandström Durling, M. and Lindahl, B.D. (2010) Production of Ectomycorrhizal Mycelium Peaks during Canopy Closure in Norway Spruce Forests. New Phytologist, 187, 1124-1134. https://doi.org/10.1111/j.1469-8137.2010.03324.x
[53]
Hage‐Ahmed, K., Rosner, K. and Steinkellner, S. (2019) Arbuscular Mycorrhizal Fungi and Their Response to Pesticides. Pest Management Science, 75, 583-590. https://doi.org/10.1002/ps.5220
[54]
Helander, M., Saloniemi, I., Omacini, M., Druille, M., Salminen, J.-P. and Saikkonen, K. (2018) Glyphosate Decreases Mycorrhizal Colonization and Affects Plant-Soil Feedback. Science of the Total Environment, 642, 285-291. https://doi.org/10.1016/j.scitotenv.2018.05.377
[55]
Sarkodee-Addo, E., Yasuda, M., Lee, C.G., Kanasugi, M., Fujii, Y., Omari, R.A., Abebrese, S.O., Bam, R., Asuming-Brempong, S., Dastogeer, K.M.G. and Okazaki, S. (2020) Arbuscular Mycorrhizal Fungi Associated with Rice (Oryza sativa L.) in Ghana: Effect of Regional Locations and Soil Factors on Diversity and Community Assembly. Agronomy, 10, Article 559. https://doi.org/10.3390/agronomy10040559
[56]
Adamo, I., Ortiz-Malavasi, E., Chazdon, R., Chaverri, P., Steege, H.T. and Geml, J. (2021) Soil Fungal Community Composition Correlates with Site-Specific Abiotic Factors, Tree Community Structure, and Forest Age in Regenerating Tropical Rainforests. Biology, 10, Article 1120. https://doi.org/10.3390/biology10111120
[57]
Buyer, J.S., Baligar, V.C., He, Z. and Arévalo-Gardini, E. (2017) Soil Microbial Communities under Cacao Agroforestry and Cover Crop Systems in Peru. Applied Soil Ecology, 120, 273-280. https://doi.org/10.1016/j.apsoil.2017.09.009
[58]
Kawahara, A., An, G.-H., Miyakawa, S., Sonoda, J. and Ezawa, T. (2016) Nestedness in Arbuscular Mycorrhizal Fungal Communities along Soil pH Gradients in Early Primary Succession: Acid-Tolerant Fungi Are pH Generalists. PLOS ONE, 11, e0165035. https://doi.org/10.1371/journal.pone.0165035
[59]
Lauber, C.L., Hamady, M., Knight, R. and Fierer, N. (2009) Pyrosequencing-Based Assessment of Soil pH as a Predictor of Soil Bacterial Community Structure at the Continental Scale. Applied and Environmental Microbiology, 75, 5111-5120. https://doi.org/10.1128/AEM.00335-09
[60]
Xiong, R., He, X., Gao, N., Li, Q., Qiu, Z., Hou, Y. and Shen, W. (2024) Soil pH Amendment Alters the Abundance, Diversity, and Composition of Microbial Communities in Two Contrasting Agricultural Soils. Microbiology Spectrum, 12, e04165-23. https://doi.org/10.1128/spectrum.04165-23
[61]
Mishra, S.K., Tripathi, K.M. and Pandey, S. (2023) Effect of Chemical Pesticides on Soil Health and Its Physio-Chemical Properties. Novel Perspectives of Geography, Environment and Earth Sciences, 8, 156-167. https://doi.org/10.9734/bpi/npgees/v8/6115E
[62]
Singh, H., Northup, B.K., Rice, C.W. and Prasad, P.V.V. (2022) Biochar Applications Influence Soil Physical and Chemical Properties, Microbial Diversity, and Crop productivity: A Meta-Analysis. Biochar, 4, Article No. 8. https://doi.org/10.1007/s42773-022-00138-1
[63]
Yao, X., Guo, H., Zhang, K., Zhao, M., Ruan, J. and Chen, J. (2023) Trichoderma and Its Role in Biological Control of Plant Fungal and Nematode Disease. Frontiers in Microbiology, 14, Article 1160551. https://doi.org/10.3389/fmicb.2023.1160551
[64]
Prodi, A., Sandalo, S., Tonti, S., Nipoti, P. and Pisi, A. (2008) Phialophora-Like Fungi Associated with Kiwifruit Elephantiasis. Journal of Plant Pathology, 90, 487-494.