全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Conserved Phase-Field Model Based on Microconcentrations

DOI: 10.4236/am.2025.163014, PP. 275-291

Keywords: Conserved Phase-Field Model, Microconcentrations, Neumann Boundary Conditions, Well-Posedness, Passage to the Limit, Global Attractor, Numerical Simulations

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this article, we consider the conserved phase-field model based on microconcentrations. In particular, we prove the well-posedness to this model and then prove the convergence of the solutions to those of the classical conserved phase-field model as a small parameter goes to zero, on finite time intervals. We also prove the existence of global attractor and we finally give some numerical simulations.

References

[1]  Cahn, J.W. and Hilliard, J.E. (1958) Free Energy of a Nonuniform System. I. Interfacial Free Energy. The Journal of Chemical Physics, 28, 258-267.
https://doi.org/10.1063/1.1744102
[2]  Cahn, J.W. (1961) On Spinodal Decomposition. Acta Metallurgica, 9, 795-801.
https://doi.org/10.1016/0001-6160(61)90182-1
[3]  Caginalp, G. (1988) Conserved-Phase Field System: Implications for Kinetic Undercooling. Physical Review B, 38, 789-791.
https://doi.org/10.1103/physrevb.38.789
[4]  Caginalp, G. (1990) The Dynamics of a Conserved Phase Field System: Stefan-Like, Hele-Shaw, and Cahn-Hilliard Models as Asymptotic Limits. IMA Journal of Applied Mathematics, 44, 77-94.
https://doi.org/10.1093/imamat/44.1.77
[5]  Eringen, A.C. (1999) Microcontinuum Field Theories. Springer.
[6]  Evans, L. (1990). Weak Convergence Methods for Nonlinear Partial Differential Equations. American Mathematical Society.
https://doi.org/10.1090/cbms/074
[7]  Gurtin, M.E. (1996) Generalized Ginzburg-Landau and Cahn-Hilliard Equations Based on a Microforce Balance. Physica D: Nonlinear Phenomena, 92, 178-192.
https://doi.org/10.1016/0167-2789(95)00173-5
[8]  Strauss, W. (1966) On Continuity of Functions with Values in Various Banach Spaces. Pacific Journal of Mathematics, 19, 543-551.
https://doi.org/10.2140/pjm.1966.19.543
[9]  Ntsokongo, A.J. and Tathy, C. (2021) Long-Time Behavior of the Higher-Order Anisotropic Caginalp Phase-Field Systems Based on the Cattaneo Law. Asymptotic Analysis, 128, 1-30.
https://doi.org/10.3233/asy-211695
[10]  Ntsokongo, A.J., Batangouna, N. and Ampini, D. (2024) Far East Journal of Dynamical Systems. Far East Journal of Dynamical Systems, 37, 205-231.
https://doi.org/10.17654/0972111824009
[11]  Ntsokongo, A.J. (2023) Asymptotic Behavior of an Allen-Cahn Type Equation with Temperature. Discrete and Continuous Dynamical Systems, 16, 2452-2466.
https://doi.org/10.3934/dcdss.2023017
[12]  Zhang, T. and Kamlah, M. (2018) A Nonlocal Species Concentration Theory for Diffusion and Phase Changes in Electrode Particles of Lithium Ion Batteries. Continuum Mechanics and Thermodynamics, 30, 553-572.
https://doi.org/10.1007/s00161-018-0624-z
[13]  Forest, S. and Miranville, A. (2023) A Cahn-Hilliard Model Based on Microconcentrations. Mediterranean Journal of Mathematics, 20, Article No. 223.
https://doi.org/10.1007/s00009-023-02430-1
[14]  Di Leo, C.V., Rejovitzky, E. and Anand, L. (2014) A Cahn-Hilliard-Type Phase-Field Theory for Species Diffusion Coupled with Large Elastic Deformations: Application to Phase-Separating Li-Ion Electrode Materials. Journal of the Mechanics and Physics of Solids, 70, 1-29.
https://doi.org/10.1016/j.jmps.2014.05.001
[15]  Kaessmair, S. and Steinmann, P. (2016) Comparative Computational Analysis of the Cahn-Hilliard Equation with Emphasis on C1-Continuous Methods. Journal of Computational Physics, 322, 783-803.
https://doi.org/10.1016/j.jcp.2016.07.005
[16]  Cherfils, L., Petcu, M. and Pierre, M. (2010) A Numerical Analysis of the Cahn-Hilliard Equation with Dynamic Boundary Conditions. Discrete & Continuous Dynamical Systems A, 27, 1511-1533.
https://doi.org/10.3934/dcds.2010.27.1511
[17]  Miranville, A. (2013) On the Conserved Phase-Field Model. Journal of Mathematical Analysis and Applications, 400, 143-152.
https://doi.org/10.1016/j.jmaa.2012.11.038
[18]  Temam, R. (1997) Infinite-Dimensional Dynamical Systems in Mechanics and Physics. 2nd Edition, Springer.
[19]  Miranville, A. and Zelik, S. (2008) Attractors for Dissipative Partial Differential Equations in Bounded and Unbounded Domains. In: Handbook of Differential Equations: Evolutionary Equations, Elsevier, 103-200.
https://doi.org/10.1016/s1874-5717(08)00003-0
[20]  Hecht, F. (2012) New Development in Freefem++. Journal of Numerical Mathematics, 20, 251-266.
https://doi.org/10.1515/jnum-2012-0013

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133