|
南方湿热地区柔性基层路面结构参数设计研究
|
Abstract:
为推广组合式柔性基层结构在南方湿热地区的应用,依据行业规范,选取福建地区典型路面材料,进行试验与统计分析,制定材料设计经验值。研究结果表明福建省的沥青混合料在动态模量上虽达标,但数值较全国平均值偏低;对于PE改性剂,其掺加比例建议控制在不超过0.35%为宜;级配碎石的动态模量受到多种因素如含水状态、体积应力、围压及密实程度的共同影响;按照实测服役期含水率变化规律,取最佳含水率靠近下限作为设计推荐值。本研究为湿热气候条件下的柔性基层结构设计及其实际应用提供了宝贵的见解,对促进福建等地区的路面工程建设与实践发展具有重要意义。
To promote the application of composite flexible base structures in humid and hot environments, based on industry standards, typical pavement materials from Fujian Province were selected for experimental and statistical analysis to establish empirical values for material design. The research results indicate that while the asphalt mixtures in Fujian meet the dynamic modulus standards, their values are lower than the national average. For PE modifiers, it is recommended to control the blending ratio at no more than 0.35%. The dynamic modulus of graded crushed stone is influenced by multiple factors, including moisture content, volumetric stress, confining pressure, and degree of compaction. Considering the measured moisture content variation during service life, the recommended design value is set close to the lower limit of the optimal moisture content range. This study provides valuable insights into the design and practical application of flexible base structures in hot-humid climates, which is of great significance for promoting pavement engineering construction and practical development in Fujian and other regions.
[1] | 赵楷文, 张洪伟, 全蔚闻, 马宪永, 董泽蛟. 沥青路面结构设计指标优化及合理厚度探究[J]. 公路交通科技, 2022, 39(6): 9-16. |
[2] | 沈金安, 李福普, 陈景. 高速公路沥青路面早期损坏分析与防治对策[M]. 北京: 人民交通出版社, 2004. |
[3] | Chen, J., Li, Z., Zhao, Z., Huang, X., Chen, J. and Liu, Z. (2022) Investigation on Temperature Shrinkage Characteristics of the Combined Structure in Asphalt Pavement. Frontiers in Materials, 9, Article 1055641. https://doi.org/10.3389/fmats.2022.1055641 |
[4] | 王予红, 温永, 程怀磊, 孙立军, 朱晓旭. 长寿柔性基层沥青路面的极限应变[J]. 中国公路学报, 2020, 33(10): 102-114. |
[5] | 徐希忠, 韦金城, 闫翔鹏, 张正超. 长寿命沥青路面研究现状及展望[J]. 中外公路, 2023, 43(1): 36-43. |
[6] | Kleiziene, R., Vaitkus, A. and Cygas, D. (2016) Influence of Asphalt Visco-Elastic Properties on Flexible Pavement Performance. Baltic Journal of Road and Bridge Engineering, 11, 313-323. https://doi.org/10.3846/bjrbe.2016.36 |
[7] | 索智, 谭祎天, 张亚, 聂磊, 包旭. 骨架密实型沥青稳定碎石混合料动态模量研究[J]. 建筑材料学报, 2022, 25(2): 206-213. |
[8] | 邢丹, 罗晓岚. 级配碎石复合式基层沥青路面力学响应研究[J]. 公路工程, 2020, 45(3): 240-246. |
[9] | 冯新军, 郝培文, 查旭东. 沥青稳定碎石基层抗反射裂缝能力评价方法[J]. 中国公路学报, 2011, 24(2): 6-11. |
[10] | 虞峥, 彭德清, 谢鑫华. 橡胶沥青应力吸收层设计[J]. 中外公路, 2015, 35(2): 213-217. |
[11] | Yang, L., Hu, Y. and Zhang, H. (2020) Comparative Study on Asphalt Pavement Rut Based on Analytical Models and Test Data. International Journal of Pavement Engineering, 21, 781-795. https://doi.org/10.1080/10298436.2018.1511781 |
[12] | Whitehurst, L.A. and Somani, B.K. (2018) Semi-Rigid Ureteroscopy: Indications, Tips, and Tricks. Urolithiasis, 46, 39-45. https://doi.org/10.1007/s00240-017-1025-7 |
[13] | 郭芳. 基于时间硬化蠕变模型的组合式基层沥青路面结构车辙分析[J]. 公路工程, 2015, 40(6): 214-217, 222. |
[14] | 曹建建, 郑炳锋. 4类不同基层沥青路面长期性能研究[J]. 公路, 2020, 65(4): 1-6. |
[15] | 毛雪松, 黄喆, 朱风杰. 高寒高海拔地区路面典型结构适应性研究[J]. 重庆交通大学学报(自然科学版), 2017, 36(8): 23-29. |
[16] | 吕伟民, 王锡通, 郑录化. 国外沥青稳定柔性基层的材料与结构[J]. 中公路, 2004, 24(6): 83-86. |
[17] | 彭凯. 半刚性柔性复合式基层沥青路面结构与材料优化设计[D]: [硕士学位论文]. 长沙: 长沙理工大学, 2016. |
[18] | Heymsfield, E. and Tingle, J.S. (2019) State of the Practice in Pavement Structural Design/Analysis Codes Relevant to Airfield Pavement Design. Engineering Failure Analysis, 105, 12-24. https://doi.org/10.1016/j.engfailanal.2019.06.029 |
[19] | 封雅宏, 袁博, 许斌, 白子玉, 石鑫. 不同结构类型的全透水沥青路面长期性能分析[J]. 中外公路, 2020, 40(5): 21-28. |
[20] | 王林, 韦金城, 张晓萌, 吴文娟, 韩文扬. “四个一体化”破解长寿命沥青路面技术瓶颈[J]. 科学通报, 2020, 65(30): 3238-3246. |