全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

面向卫星物联网的统计业务建模以及实时预测方法
Statistical Traffic Model and Real-Time Prediction Method for Satellite IoT

DOI: 10.12677/sea.2025.142012, PP. 119-133

Keywords: 卫星物联网,业务模型,马尔可夫泊松过程,机器学习
Satellite IoT
, Traffic Model, Markov Poisson Process, Machine Learning

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对传统集总业务模型没有考虑终端晶振偏移和电池电量耗尽导致终端死亡,无法反映单个物联网终端状态,同时传统业务模型无法反映单个时隙的准确业务量,需要进行实时预测的问题,我们提出一种面向卫星物联网的统计业务建模以及实时预测方法。首先分析了终端晶振偏移和终端电池耗尽对业务量的影响,其次将传统3GPP业务模型与马可夫泊松过程相结合,考虑影响因素实现了物联网源业务建模,最后提出了一个并行CNN-BiLSTM-Adaboost网络对卫星物联网业务进行预测。仿真结果表明提出的物联网业务建模有效地提升了业务模型的准确性,解决了传统集总业务模型无法反映单个物联网终端状态的问题,同时并行CNN-BiLSTM-Adaboost网络对比传统业务预测方法在预测的准确度上有明显提升。
Aiming at the problem that the traditional aggregated traffic model fails to reflect the state of a single IoT terminal and fails to consider terminal crystal oscillator shift and battery power depletion, and the traditional traffic model fails to reflect the accurate traffic of a single time slot, which requires real-time prediction, we propose a statistical traffic model and real-time prediction method for satellite IoT. Firstly, the influence of terminal crystal shift and terminal battery depletion on the traffic volume is analyzed. Secondly, the traditional 3GPP traffic model is combined with Markov Poisson process to realize the IoT source traffic modeling considering the influencing factors. Finally, a parallel CNN-BiLSTM-Adaboost network is proposed to predict the satellite IoT traffic volume. The simulation results show that the proposed traffic model effectively improves the accuracy of the traffic model, and solves the problem that the traditional aggregated business model cannot reflect the state of a single Internet of Things terminal. Meanwhile, the parallel CNN-BiLSTM-Adaboost network has significantly improved the prediction accuracy compared with the traditional prediction methods.

References

[1]  程一凡, 曲至诚, 张更新. 低轨卫星星座物联网业务量建模[J]. 电子与信息学报, 2021, 43(4): 1050-1056.
[2]  Qu, Z., Cheng, Y. and Zhang, G. (2019) Global Aggregated Traffic Model for LEO Satellite Constellation IoT Network. 2019 International Symposium on Advanced Electrical and Communication Technologies (ISAECT), Rome, 27-29 November 2019, 1-6.
https://doi.org/10.1109/isaect47714.2019.9069711
[3]  Hussein, D.H. and Ibnkahla, M. (2022) An IoT Traffic Modeling Framework and Its Application to Autonomous Edge Scaling. GLOBECOM 2022—2022 IEEE Global Communications Conference, Rio de Janeiro, 4-8 December 2022, 5656-5661.
https://doi.org/10.1109/globecom48099.2022.10000950
[4]  Zhang, C., Zhang, H., Yuan, D. and Zhang, M. (2018) Citywide Cellular Traffic Prediction Based on Densely Connected Convolutional Neural Networks. IEEE Communications Letters, 22, 1656-1659.
https://doi.org/10.1109/lcomm.2018.2841832
[5]  Xu, Y., Yin, F., Xu, W., Lin, J. and Cui, S. (2019) Wireless Traffic Prediction with Scalable Gaussian Process: Framework, Algorithms, and Verification. IEEE Journal on Selected Areas in Communications, 37, 1291-1306.
https://doi.org/10.1109/jsac.2019.2904330
[6]  Wu, J., Qiu, T., Tang, H. and Liu, X. (2022) Network Traffic Prediction Based on a CNN-LSTM with Attention Mechanism. 2022 7th International Conference on Computational Intelligence and Applications (ICCIA), Nanjing, 24-26 June 2022, 205-209.
https://doi.org/10.1109/iccia55271.2022.9828411
[7]  Navarro-Ortiz, J., Romero-Diaz, P., Sendra, S., Ameigeiras, P., Ramos-Munoz, J.J. and Lopez-Soler, J.M. (2020) A Survey on 5G Usage Scenarios and Traffic Models. IEEE Communications Surveys & Tutorials, 22, 905-929.
https://doi.org/10.1109/comst.2020.2971781
[8]  Han, Y., Li, Q., Wang, Y., Gong, K., Liu, P. and Sun, Y. (2022) Study on Crystal Oscillator Frequency Drift Model and Performance of Low Orbit Satellite. 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, 17-19 June 2022, 1622-1626.
https://doi.org/10.1109/itaic54216.2022.9836839
[9]  罗伟林, 张立强, 吕超, 等. 锂离子电池寿命预测国外研究现状综述[J]. 电源学报, 2013(1): 140-144.
[10]  Ding, X., Ni, T., Zou, Y. and Zhang, G. (2023) Deep Learning for Satellites Based Spectrum Sensing Systems: A Low Computational Complexity Perspective. IEEE Transactions on Vehicular Technology, 72, 1366-1371.
https://doi.org/10.1109/tvt.2022.3211845

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133