全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

MFENet:面向植物伪装的多频边缘检测网络
MFENet: Multi-Frequency Edge Detection Network for Plant Camouflage

DOI: 10.12677/mos.2025.143249, PP. 589-597

Keywords: 植物伪装检测,目标检测,注意力机制,动态迭代
Plant Camouflage Detection
, Object Detection, Attention Mechanism, Dynamic Iteration

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文针对植物伪装检测任务中低信噪比、动态干扰与细粒度识别问题,提出一种多频边缘动态检测网络MFENet,以提升复杂生态场景下的隐蔽植物检测精度与鲁棒性。在MFENet中,采用多尺度频率分离模块处理低信噪比问题,通过多尺度分组卷积分离低频全局特征与高频细节特征。同时,构建了通道感知边缘注意力模块,结合Sobel边缘先验与通道–空间注意力优化细粒度特征。为进一步提升检测精度,提出了边缘强度驱动的动态迭代反馈机制,自适应调整计算复杂度。在PlantCamo数据集上,与通用的伪装检测模型相比,MFENet在各指标上提升明显。消融实验验证了各模块的有效性。MFENet显著提升了植物伪装检测的精度与效率,为生态保护与农业监测提供可靠技术支撑。
This paper addresses the problems of low signal-to-noise ratio, dynamic interference, and fine-grained recognition in the task of plant camouflage detection. We propose a multi-frequency edge dynamic detection network (MFENet) to enhance the accuracy and robustness of concealed plant detection in complex ecological scenes. MFENet employs a multi-scale frequency separation module to address the low signal-to-noise ratio issue by utilizing multi-scale grouped convolutions to separate low-frequency global features from high-frequency detail features. Additionally, we construct a Channel-Aware Edge Attention module that combines Sobel edge priors with channel-space attention to optimize fine-grained features. To further enhance detection accuracy, we introduce an edge intensity-driven dynamic iterative feedback mechanism to adaptively adjust computational complexity. On the PlantCamo dataset, MFENet shows significant improvements in all evaluation metrics compared to conventional camouflage detection models. Ablation studies validate the effectiveness of each module. MFENet significantly enhances the accuracy and efficiency of plant camouflage detection, providing reliable technical support for ecological protection and agricultural monitoring.

References

[1]  Stevens, M. and Merilaita, S. (2008) Animal Camouflage: Current Issues and New Perspectives. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 423-427.
https://doi.org/10.1098/rstb.2008.0217
[2]  Skelhorn, J. and Rowe, C. (2016) Cognition and the Evolution of Camouflage. Proceedings of the Royal Society B: Biological Sciences, 283, 20152890.
https://doi.org/10.1098/rspb.2015.2890
[3]  Fan, D., Ji, G., Sun, G., Cheng, M., Shen, J. and Shao, L. (2020) Camouflaged Object Detection. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, 13-19 June 2020, 2774-2784.
https://doi.org/10.1109/cvpr42600.2020.00285
[4]  Yang, J., Wang, Q., Zheng, F., et al. (2024) PlantCamo: Plant Camouflage Detection.
https://doi.org/10.48550/arXiv.2410.17598
[5]  Roy, P.S. (1989) Spectral Reflectance Characteristics of Vegetation and Their Use in Estimating Productive Potential. Proceedings/Indian Academy of Sciences, 99, 59-81.
https://doi.org/10.1007/bf03053419
[6]  Lv, Y., Zhang, J., Dai, Y., Li, A., Liu, B., Barnes, N., et al. (2021) Simultaneously Localize, Segment and Rank the Camouflaged Objects. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, 20-25 June 2021, 11586-11596.
https://doi.org/10.1109/cvpr46437.2021.01142
[7]  Wang, W., Xie, E., Li, X., Fan, D., Song, K., Liang, D., et al. (2022) PVT V2: Improved Baselines with Pyramid Vision Transformer. Computational Visual Media, 8, 415-424.
https://doi.org/10.1007/s41095-022-0274-8
[8]  Fan, D., Cheng, M., Liu, Y., Li, T. and Borji, A. (2017) Structure-measure: A New Way to Evaluate Foreground Maps. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, 22-29 October 2017, 4558-4567.
https://doi.org/10.1109/iccv.2017.487
[9]  Fan, D., Gong, C., Cao, Y., Ren, B., Cheng, M. and Borji, A. (2018) Enhanced-Alignment Measure for Binary Foreground Map Evaluation. Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, Stockholm, 13-19 July 2018, 698-704.
https://doi.org/10.24963/ijcai.2018/97
[10]  Margolin, R., Zelnik-Manor, L. and Tal, A. (2014) How to Evaluate Foreground Maps. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, 23-28 June 2014, 248-255.
https://doi.org/10.1109/cvpr.2014.39
[11]  Perazzi, F., Krahenbuhl, P., Pritch, Y. and Hornung, A. (2012) Saliency Filters: Contrast Based Filtering for Salient Region Detection. 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, 16-21 June 2012, 733-740.
https://doi.org/10.1109/cvpr.2012.6247743
[12]  Pang, Y., Zhao, X., Xiang, T., Zhang, L. and Lu, H. (2022) Zoom in and Out: A Mixed-Scale Triplet Network for Camouflaged Object Detection. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, 18-24 June 2022, 2150-2160.
https://doi.org/10.1109/cvpr52688.2022.00220
[13]  Fan, D., Ji, G., Cheng, M. and Shao, L. (2022) Concealed Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 6024-6042.
https://doi.org/10.1109/tpami.2021.3085766
[14]  Sun, Y., Wang, S., Chen, C. and Xiang, T. (2022) Boundary-guided Camouflaged Object Detection. Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, Vienna, 23-29 July 2022, 1335-1341.
https://doi.org/10.24963/ijcai.2022/186
[15]  Hu, X., Wang, S., Qin, X., Dai, H., Ren, W., Luo, D., et al. (2023) High-Resolution Iterative Feedback Network for Camouflaged Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence, 37, 881-889.
https://doi.org/10.1609/aaai.v37i1.25167

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133