|
青藏高原西南部冰川分布与地形因子关系研究
|
Abstract:
冰川是冰冻圈的重要组成部分,是中国极其重要的固体水资源,对气候、水资源、环境等有重要影响。以青藏高原西南部冰川为研究区,基于DEM数据提取地形因子,利用均值变点法界定地形因子的最佳分析窗口。将地形因子进行分类,结合冰川分布数据,统计不同等级的地形因子对冰川面积的分布情况,进而研究冰川分布与地形因子之间的关系。结果表明:(1) 基于DEM数据的地形起伏度和地表切割深度的最佳分析窗口为36 × 36个像元的矩形邻域,对应面积约为1.1664 km2,高程变异系数的最佳分析窗口34 × 34个像元的矩形邻域,对应面积约为1.0404 km2。(2) 地形起伏程度由其西北部向东南部、南部递增,冈底斯山出现低起伏地貌特征;地表切割深度和高程变异系数都由其西北部向东南部递增,念青唐古拉山切割深度和高程变异系数显著;喜马拉雅山和念青唐古拉山地表粗糙程度明显;坡度坡向无明显特征。(3) 总体上,青藏高原西南部冰川分布与地形因子有显著的关系:冰川总面积的35%分布在地形起伏度为6.2~6.7的区间;冰川总面积的38%分布在地表切割深度150~270的区间;冰川总面积的28%分布在高程变异系数0.02~0.03的区间;冰川总面积的38%分布在地形粗糙度 < 1.07的区间内;冰川总面积的28%分布在坡度0?~13?的区间;冰川总面积的19%分布在北坡上。
Glacier is an important part of the cryosphere and an extremely important solid water resource in China, which has an important influence on climate, water resources and environment. Taking the glaciers in the southwest of Qinghai-Xizang Plateau as the study area, terrain factors were extracted based on DEM data, and the optimal analysis window of terrain factors was defined by means of mean change point method. By classifying the topographic factors and combining with the glacier distribution data, the distribution of different levels of topographic factors on the glacier area is counted, and then the relationship between the glacier distribution and topographic factors is studied. Results show that: (1) The optimal analysis window for topographic undulation and surface cutting depth based on DEM data is a rectangular neighborhood of 36 × 36 pixels, corresponding to an area of about 1.1664 km2, and the optimal analysis window for the elevation variation coefficient is 34 × 34. The rectangular neighborhood of pixels corresponds to an area of about 1.0404 km2. (2) The degree of relief increases from the northwest to the southeast and the south, and the Gangdise mountain is characterized by low relief; The cutting depth and the variation coefficient of elevation increase from the northwest to the southeast, and the cutting depth and the variation coefficient of elevation of Nyainqentanglha mountain are significant; The surface roughness of Himalayas and Nyainqentanglha mountains is obvious; The slope aspect has no obvious characteristics. (3) In general, there is a significant relationship between the distribution of glaciers and topographic factors in the southwest of Qinghai-Xizang Plateau: 35% of the total glacier area is distributed in the range of
[1] | Kargel, J.S., Leonard, G.J., Bishop, M.P., et al. (2014) Global Land Ice Measurements from Space. Springer. https://doi.org/10.1007/978-3-540-79818-7 |
[2] | 张九天, 何霄嘉, 上官冬辉, 等. 冰川加剧消融对我国西北干旱区的影响及其适应对策[J]. 冰川冻土, 2012, 34(4): 848-854. |
[3] | 刘时银, 姚晓军, 郭万钦, 等. 基于第二次冰川编目的中国冰川现状[J]. 地理学报, 2015, 70(1): 3-16. |
[4] | 吴坤鹏, 刘时银, 郭万钦. 1980-2015年南迦巴瓦峰地区冰川变化及其对气候变化的响应[J]. 冰川冻土, 2020, 42(4): 1115-1125. |
[5] | 王一凡. 近40年青藏高原典型冰川变化规律及成因[D]: [硕士学位论文]. 北京: 中国地质大学(北京), 2017. |
[6] | 尤联元, 杨景春. 中国地貌[M]. 北京: 科学出版社, 2013. |
[7] | Immerzeel, W.W., Van Beek, L.P.H. and Bierkens, M.F.P. (2010) Climate Change Will Affect the Asian Water Towers. Science, 328, 1382-1385. https://doi.org/10.1126/science.1183188 |
[8] | 冀琴, 刘睿, 杨太保. 1990-2015年喜马拉雅山冰川变化的遥感监测[J]. 地理研究,2020, 39(10): 2403-2414. |
[9] | 刘娟, 姚晓军, 刘时银, 等. 1970-2016年冈底斯山冰川变化[J]. 地理学报, 2019, 74(7): 1333-1344. |
[10] | 孙世威, 康世昌, 张强弓, 等. 青藏高原冰冻圈汞研究及其环境意义[J]. 自然杂志, 2020, 42(5): 364-372. |
[11] | 安国英, 韩磊, 黄树春, 等. 念青唐古拉山现代冰川1999-2015年期间动态变化遥感研究[J]. 现代地质, 2019, 33(1): 176-186. |
[12] | 张太刚, 高坛光, 刁文钦, 等. 祁连山区雪冰反照率变化及其对冰川物质平衡的影响[J]. 冰川冻土, 2021, 43(1): 145-157. |
[13] | 李林凤, 李开明. 石羊河流域冰川变化与地形因子的关系探究[J]. 冰川冻土, 2019, 41(5): 1026-1035. |
[14] | 张正勇, 刘琳, 徐丽萍. 冰川分布格局对地理因子响应机制[J]. 生态环境学, 2018, 27(2): 290-296. |
[15] | 封志明, 李文君, 李鹏, 等. 青藏高原地形起伏度及其地理意义[J]. 地理学报, 2020, 75(7): 1359-1372. |
[16] | 许强, 丁林. 冈底斯山的隆升过程与青藏高原古高度研究[J]. 中国科学基金, 2015, 29(1): 54-59. |
[17] | 刘时银, 张勇, 刘巧, 等. 气候变化对冰川影响与风险研究[M]. 北京: 科学出版社, 2017. |
[18] | Guo, W.Q., Liu, S.Y., Xu, L., Wu, L.Z., Shangguan, D.H., Yao, X.J., Wei, J.F., Bao, W.J., Yu, P.C., Liu, Q. and Jiang, Z.L. (2015) The second Chinese Glacier Inventory: Data, Methods and Results. Journal of Glaciology, 61, 357-372. https://doi.org/10.3189/2015JoG14J209 |
[19] | 孟晓捷, 郭小鹏, 薛强, 等. 黄土地质灾害评价因子地形起伏度提取最佳尺度研究: 以榆林市米脂县为例[J]. 西北地质, 2024, 57(6): 234-243. |
[20] | Zhang, J., Zhu, W., Zhu, L., et al. (2019) Topographical Relief Characteristics and Its Impact on Population and Economy: A Case Study of the Mountainous Area in Western Henan, China. Journal of Geographical Sciences, 29, 598-612. https://doi.org/10.1007/s11442-019-1617-y |
[21] | 谭青芳, 陈峰庭, 黄钰涵, 等. 饱和黄绵土坡面细沟侵蚀微地形变化及其对水力学特征参数的响应[J]. 土壤学报: 1-11. https://kns.cnki.net/kcms2/article/abstract?v=_GofKS1StuTebvDH099fLWhUsgLd1eqn9v6jG4VbqwVko2VV3NncjaoYbpQhSbCkkvHarjp55ZcmCZf7a5AgoqwCGPRJgwgtfAWEaqft1iOrRpTgBURFe_BjZBNV2vov-Oe4F2TDlTyzjWsDdchCUfHE1yL6eiMuuJVEqEkdDBs=&uniplatform=NZKPT, 2025-03-24. |
[22] | 杨晓平, 王萍, 李晓峰, 等. 地形坡度和高程变异系数在识别墨脱活动断裂带中的应用[J]. 地震地质, 2019, 41(2): 419-435. |
[23] | 黄晓龙, 徐晓莉, 吴薇, 等. 基于DEM的四川省地面气象台站地形特征分析[J]. 高原山地气象研究, 2022, 42(1): 135-142. |
[24] | 宁婷, 崔伟, 马晓勇. 基于均值变点法提取地形起伏度的影响因素分析——以黄河流域(山西段)为例[J]. 测绘通报, 2022(2): 159-163. |