全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

人工智能赋能应用统计本科人才多元协同培养模式的探究
Exploration of the Multivariate Cooperative Training Model for Undergraduate Applied Statistics Talents Empowered by Artificial Intelligence

DOI: 10.12677/ve.2025.143142, PP. 181-187

Keywords: 人工智能,应用统计学,人才培养
Artificial Intelligence
, Applied Statistics, Talent Cultivation

Full-Text   Cite this paper   Add to My Lib

Abstract:

在当今科技迅猛发展之际,人工智能深度重塑各行业,催生出对既懂统计学理论又能运用人工智能技术的复合型人才的迫切需求,为应用统计本科人才培养带来机遇与挑战。有鉴于此,本文聚焦人工智能赋能的多元协同培养模式深入探究,提出多元联动策略构建协同育人全新模式。着重强调学校与企业的协同培养,将前沿技术纳入课程体系,根据企业需求制定课程计划;进一步促进人工智能与应用统计学专业的融合,将传统统计知识体系与人工智能算法结合,开创智慧统计新赛道;加强学生的综合素养与实践能力,通过引入贴合实际的实践项目,培养学生专业能力,督促学生参与比赛,强化统计思维。为人工智能时代精准输送高素质适配人才,达成人才培养与社会进步的双赢局面,助推应用统计专业重现蓬勃生机。
In the current era of rapid technological development, artificial intelligence is deeply reshaping various industries, giving rise to an urgent need for compound talents who are proficient in both statistical theories and the application of artificial intelligence technologies. This brings both opportunities and challenges to the cultivation of undergraduate talents in applied statistics. In view of this, this paper focuses on in-depth exploration of the multi-collaborative cultivation model empowered by artificial intelligence and proposes a multi-linkage strategy to construct a new model of collaborative education. It emphasizes the collaborative cultivation between schools and enterprises, incorporates cutting-edge technologies into the curriculum system, and formulates curriculum plans based on the needs of enterprises. Furthermore, it promotes the integration of artificial intelligence and the applied statistics major, combines the traditional statistical knowledge system with artificial intelligence algorithms, and creates a new track of intelligent statistics. It also strengthens students’ comprehensive qualities and practical abilities. By introducing practical practice projects, it cultivates students’ professional abilities, urges students to participate in competitions, and reinforces statistical thinking. It aims to accurately deliver high-quality and suitable talents in the era of artificial intelligence, achieve a win-win situation between talent cultivation and social progress, and boost the applied statistics major to regain its vitality.

References

[1]  中国信息通信研究院. 人工智能发展报告(2024年) [R/OL].
https://www.xinhuanet.com/info/20241213/ddf4f98d33ce4ef1ae7c9c4c02747d7e/c.html, 2025-03-20.
[2]  中华人民共和国教育部. 教育部办公厅关于征求对《关于“十三五”期间全面深入推进教育信息化工作的指导意见(征求意见稿)》意见的通知[EB/OL].
https://www.gov.cn/gongbao/content/2016/content_5133005.htm, 2025-03-20.
[3]  江苏省教育厅. 省教育厅关于印发《江苏高校人工智能赋能专业建设行动方案》的通知[EB/OL].
https://jyt.jiangsu.gov.cn/art/2024/12/10/art_77619_11455660.html, 2025-03-20.
[4]  黄海军, 王国强, 张涛. 依托案例的应用统计学专业教学方法初探[J]. 高教学刊, 2019(3): 81-82+85.
[5]  张士磊, 孟昕元. 创新实践型人才培养的实验教学改革与探索[J]. 实验科学与技术, 2014, 12(1): 149-152.
[6]  李晓威, 顾海鹏. AI视域下统计学本科专业建设改革探索[J]. 创新创业理论研究与实践, 2020, 3(7): 94-96.
[7]  林军, 王肖鹏, 王炳璇, 等. 经管类“应用统计学”课程的教学模式改革与创新——以大数据时代为背景[J]. 教育教学论坛, 2022(22): 69-72.
[8]  杜江, 戴君, 曹瑞元. 人工智能与数字技术背景下统计学专业实践教学体系优化及设计[J]. 高教学刊, 2024, 10(9): 115-118.
[9]  周密, 肖铮. 应用型本科院校经济统计专业宏观经济分析能力人才培养的实践研究[J]. 华东科技, 2022(9): 146-148.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133