|
益生菌制剂对脊柱及椎旁肌术后恢复的研究进展
|
Abstract:
腰椎管狭窄症在当今社会的发病率逐年增长,腰椎管狭窄症术后主要的恢复目标是缓解疼痛、改善神经功能和恢复腰椎稳定性。近年来,微创手术技术逐渐成为主流,因其对椎旁肌损伤小,术后恢复快。与此同时,益生菌作为一种新兴的治疗策略,在骨科疾病中的应用逐渐受到关注。益生菌通过调节肠道菌群、免疫系统和钙代谢,对骨骼健康产生积极影响。研究表明,益生菌可通过以下机制发挥作用:一是通过肠–肌轴改善肌肉质量和功能,延缓肌肉萎缩;二是通过肠–骨轴调节免疫细胞(如Treg、Th17)和细胞因子(如IL-10、IL-17),影响骨代谢,预防骨质疏松;三是通过调节肠道免疫平衡,减少炎症反应,从而减轻术后疼痛。在腰椎术后康复中,益生菌可能通过减轻术后炎症、促进肌肉恢复和改善骨代谢,发挥潜在的辅助作用。然而,目前关于益生菌在腰椎术后康复中的研究仍处于临床前阶段,人体研究数量有限且存在设计缺陷。未来需要开展更多高质量的人体临床试验,以验证益生菌在骨科领域的疗效和安全性。此外,深入探索益生菌的作用机制,如其对细胞受体的影响及其与其他器官系统的相互作用,也将为骨科治疗提供新的思路。
The incidence of lumbar spinal stenosis (LSS) is increasing year by year in today’s society. The primary recovery goals after surgery for LSS are to relieve pain, improve neurological function, and restore lumbar spine stability. In recent years, minimally invasive surgical techniques have gradually become mainstream due to their minimal damage to paraspinal muscles and faster postoperative recovery. Meanwhile, probiotics, as an emerging therapeutic strategy, have increasingly attracted attention for their potential applications in orthopedic diseases. Probiotics exert positive effects on bone health by modulating the gut microbiota, immune system, and calcium metabolism. Studies have shown that probiotics can function through the following mechanisms: First, they improve muscle quality and function and delay muscle atrophy via the gut-muscle axis. Second, they regulate immune cells (such as Treg and Th17) and cytokines (such as IL-10 and IL-17) via the gut-bone axis, influencing bone metabolism and preventing osteoporosis. Third, they reduce inflammatory responses and alleviate postoperative pain by regulating gut immune balance. In the rehabilitation after lumbar surgery, probiotics may play a potential supportive role by reducing postoperative inflammation, promoting muscle recovery, and improving bone metabolism. However, research on the application of probiotics in postoperative lumbar rehabilitation is still in the preclinical stage, with limited and flawed human studies. More high-quality clinical trials are needed in the future to verify the efficacy and safety of probiotics in orthopedics. Additionally, exploring the mechanisms of action of probiotics, such as their effects on cell receptors and interactions with other organ systems, will provide new insights for orthopedic treatment.
[1] | de Sire, A., de Sire, R., Curci, C., Castiglione, F. and Wahli, W. (2022) Role of Dietary Supplements and Probiotics in Modulating Microbiota and Bone Health: The Gut-Bone Axis. Cells, 11, Article 743. https://doi.org/10.3390/cells11040743 |
[2] | Regev, G.J., Leor, G., Ankori, R., Hochberg, U., Ofir, D., Khashan, M., et al. (2021) Long-Term Pain Characteristics and Management Following Minimally Invasive Spinal Decompression and Open Laminectomy and Fusion for Spinal Stenosis. Medicina (Kaunas). Medicina, 57, Article 1125. https://doi.org/10.3390/medicina57101125 |
[3] | Chen, P., Xu, T., Zhang, C., Tong, X., Shaukat, A., He, Y., et al. (2022) Effects of Probiotics and Gut Microbiota on Bone Metabolism in Chickens: A Review. Metabolites, 12, Article 1000. https://doi.org/10.3390/metabo12101000 |
[4] | Wit, E. and McClure, J. (2004). Statistics for Microarrays: Design, Analysis, and Inference. 5th Edition, John Wiley & Sons Ltd., 5-18. https://doi.org/10.1002/0470011084 |
[5] | Jia, L., Tu, Y., Jia, X., Du, Q., Zheng, X., Yuan, Q., et al. (2021) Probiotics Ameliorate Alveolar Bone Loss by Regulating Gut Microbiota. Cell Proliferation, 54, e13075. https://doi.org/10.1111/cpr.13075 |
[6] | Zaiss, M.M., Jones, R.M., Schett, G. and Pacifici, R. (2019) The Gut-Bone Axis: How Bacterial Metabolites Bridge the Distance. Journal of Clinical Investigation, 129, 3018-3028. https://doi.org/10.1172/jci128521 |
[7] | Tyagi, A.M., Yu, M., Darby, T.M., Vaccaro, C., Li, J., Owens, J.A., et al. (2018) The Microbial Metabolite Butyrate Stimulates Bone Formation via T Regulatory Cell-Mediated Regulation of WNT10B Expression. Immunity, 49, 1116-1131.e7. https://doi.org/10.1016/j.immuni.2018.10.013 |
[8] | Li, C., Pi, G. and Li, F. (2021) The Role of Intestinal Flora in the Regulation of Bone Homeostasis. Frontiers in Cellular and Infection Microbiology, 11, Article 579323. https://doi.org/10.3389/fcimb.2021.579323 |
[9] | Sirufo, M.M., De Pietro, F., Catalogna, A., Ginaldi, L. and De Martinis, M. (2021) The Microbiota-Bone-Allergy Interplay. International Journal of Environmental Research and Public Health, 19, Article 282. https://doi.org/10.3390/ijerph19010282 |
[10] | Cho, S., Kim, S., Ha, S., Kim, S., Lim, D., Cha, J., et al. (2020) Paraspinal Muscle Changes after Single-Level Posterior Lumbar Fusion: Volumetric Analyses and Literature Review. BMC Musculoskeletal Disorders, 21, Article No. 73. https://doi.org/10.1186/s12891-020-3104-0 |
[11] | Yan, F. and Polk, D.B. (2011) Probiotics and Immune Health. Current Opinion in Gastroenterology, 27, 496-501. https://doi.org/10.1097/mog.0b013e32834baa4d |
[12] | Wu, Z., Mehrabi Nasab, E., Arora, P. and Athari, S.S. (2022) Study Effect of Probiotics and Prebiotics on Treatment of OVA-LPS-Induced of Allergic Asthma Inflammation and Pneumonia by Regulating the TLR4/NF-κB Signaling Pathway. Journal of Translational Medicine, 20, Article No. 130. https://doi.org/10.1186/s12967-022-03337-3 |
[13] | Chen, L., Chang, S., Chang, H., Wu, C., Pan, C., Chang, C., et al. (2021) Probiotic Supplementation Attenuates Age-Related Sarcopenia via the Gut-Muscle Axis in SAMP8 Mice. Journal of Cachexia, Sarcopenia and Muscle, 13, 515-531. https://doi.org/10.1002/jcsm.12849 |
[14] | Chudzik, A., Orzyłowska, A., Rola, R. and Stanisz, G.J. (2021) Probiotics, Prebiotics and Postbiotics on Mitigation of Depression Symptoms: Modulation of the Brain-Gut-Microbiome Axis. Biomolecules, 11, Article 1000. https://doi.org/10.3390/biom11071000 |
[15] | Matzaras, R., Anagnostou, N., Nikopoulou, A., Tsiakas, I. and Christaki, E. (2023) The Role of Probiotics in Inflammation Associated with Major Surgery: A Narrative Review. Nutrients, 15, Article 1331. https://doi.org/10.3390/nu15061331 |
[16] | Roy, S. and Dhaneshwar, S. (2023) Role of Prebiotics, Probiotics, and Synbiotics in Management of Inflammatory Bowel Disease: Current Perspectives. World Journal of Gastroenterology, 29, 2078-2100. https://doi.org/10.3748/wjg.v29.i14.2078 |
[17] | Zhou, J., Li, M., Chen, Q., Li, X., Chen, L., Dong, Z., et al. (2022) Programmable Probiotics Modulate Inflammation and Gut Microbiota for Inflammatory Bowel Disease Treatment after Effective Oral Delivery. Nature Communications, 13, Article No. 3432. https://doi.org/10.1038/s41467-022-31171-0 |
[18] | Azad, M.A.K., Sarker, M., Li, T. and Yin, J. (2018) Probiotic Species in the Modulation of Gut Microbiota: An Overview. BioMed Research International, 2018, Article ID: 9478630. https://doi.org/10.1155/2018/9478630 |
[19] | Guo, M., Liu, H., Yu, Y., Zhu, X., Xie, H., Wei, C., et al. (2023) Lactobacillus rhamnosus GG Ameliorates Osteoporosis in Ovariectomized Rats by Regulating the Th17/Treg Balance and Gut Microbiota Structure. Gut Microbes, 15, Article 2190304. https://doi.org/10.1080/19490976.2023.2190304 |
[20] | 秦锐, 郭刚, 张世峰, 等. 肠道微生物对骨质疏松大鼠/小鼠调节作用机制的研究进展[J]. 工业微生物, 2023, 53(6): 7-9. |
[21] | 梁壮, 董博, 杨蕾, 等. 益生菌补充剂治疗绝经后骨质疏松症或骨量减少的系统评价[J]. 中国微生态学杂志, 2023, 35(5): 532-541. |
[22] | 郭晋青. 维生素D联合益生菌对中老年大鼠骨代谢的影响[D]: [硕士学位论文]. 长春: 吉林大学, 2023. |
[23] | Sojan, J.M., Gioacchini, G., Giorgini, E., Orlando, P., Tiano, L., Maradonna, F., et al. (2022) Zebrafish Caudal Fin as a Model to Investigate the Role of Probiotics in Bone Regeneration. Scientific Reports, 12, Article No. 8057. https://doi.org/10.1038/s41598-022-12138-z |
[24] | Mazzotti, A., Langone, L., Arceri, A., Artioli, E., Zielli, S.O., Bonelli, S., et al. (2023) Probiotics in Orthopedics: From Preclinical Studies to Current Applications and Future Perspective. Microorganisms, 11, Article 2021. https://doi.org/10.3390/microorganisms11082021 |
[25] | Hughes, R.L. and Holscher, H.D. (2021) Fueling Gut Microbes: A Review of the Interaction between Diet, Exercise, and the Gut Microbiota in Athletes. Advances in Nutrition, 12, 2190-2215. https://doi.org/10.1093/advances/nmab077 |
[26] | Prokopidis, K., Giannos, P., Kirwan, R., Ispoglou, T., Galli, F., Witard, O.C., et al. (2022) Impact of Probiotics on Muscle Mass, Muscle Strength and Lean Mass: A Systematic Review and Meta‐Analysis of Randomized Controlled Trials. Journal of Cachexia, Sarcopenia and Muscle, 14, 30-44. https://doi.org/10.1002/jcsm.13132 |
[27] | Shams, M., Esmaeili, F., Sadeghi, S., Shanaki-Bavarsad, M., Seyyed Ebrahimi, S.S., Hashemnia, S.M.R., et al. (2023) Bacillus Coagulans T4 and Lactobacillus Paracasei TD3 Ameliorate Skeletal Muscle Oxidative Stress and Inflammation in High-Fat Diet-Fed C57BL/6J Mice. Iranian Journal of Pharmaceutical Research, 22, e135249. https://doi.org/10.5812/ijpr-135249 |
[28] | Jäger, R., Shields, K.A., Lowery, R.P., De Souza, E.O., Partl, J.M., Hollmer, C., et al. (2016) Probioticbacillus Coagulansgbi-30, 6086 Reduces Exercise-Induced Muscle Damage and Increases Recovery. PeerJ, 4, e2276. https://doi.org/10.7717/peerj.2276 |
[29] | Ibrahim, I., Syamala, S., Ayariga, J.A., Xu, J., Robertson, B.K., Meenakshisundaram, S., et al. (2022) Modulatory Effect of Gut Microbiota on the Gut-Brain, Gut-Bone Axes, and the Impact of Cannabinoids. Metabolites, 12, Article 1247. https://doi.org/10.3390/metabo12121247 |
[30] | Nath, A., Molnár, M.A., Csighy, A., Kőszegi, K., Galambos, I., Huszár, K.P., et al. (2018) Biological Activities of Lactose-Based Prebiotics and Symbiosis with Probiotics on Controlling Osteoporosis, Blood-Lipid and Glucose Levels. Medicina, 54, Article 98. https://doi.org/10.3390/medicina54060098 |