|
齐多夫定与干扰素-α联合治疗的应用与研究进展
|
Abstract:
干扰素-α (IFN-α)是一种具有抗病毒、抗肿瘤及免疫调节功能的细胞因子,而齐多夫定(AZT)则是首个获得批准的抗HIV逆转录酶抑制剂。两者的联合使用旨在通过协同作用增强抗病毒效果,但后续研究表明其疗效与毒性之间存在复杂的权衡关系。本文结合基础研究与临床数据,系统总结了齐多夫定的临床应用范围及其作用机制,干扰素-α的生物学功能及应用,以及齐多夫定与干扰素-α在不同疾病中的联合应用。此外,本文还探讨了齐多夫定与干扰素-α联合应用的潜在作用机制,以及相关争议与不足之处,并指出未来研究的重点方向。通过全面评述该联合治疗的科学价值与局限性,本文对齐多夫定与干扰素-α的联合应用展开深入探讨,阐明了其在抗病毒和抗肿瘤领域的重要价值,为后续联合治疗的研究方向提供新的思路。
Interferon-alpha (IFN-α) is a multifunctional cytokine renowned for its antiviral, antitumor, and immunomodulatory properties, while Zidovudine (AZT) stands as the first approved reverse transcriptase inhibitor targeting HIV. The combined use of these two agents aims to amplify antiviral efficacy through synergistic interactions; however, subsequent research has revealed a complex interplay between therapeutic benefits and toxicological trade-offs. This article systematically synthesizes foundational research and clinical data to delineate the scope of Zidovudine’s clinical applications and its mechanisms of action, the biological functions and therapeutic uses of Interferon-alpha, as well as the combined application of Zidovudine and Interferon-alpha across various diseases. Furthermore, this paper explores the potential mechanisms underlying the combined use of Zidovudine and Interferon-alpha, addresses ongoing controversies and limitations, and identifies key directions for future research. By comprehensively reviewing the scientific value and limitations of this combined treatment, this paper conducts an in-depth exploration of the combined application of zidovudine and interferon-α, clarifies its significant value in the fields of antiviral and antitumor therapies, and provides new insights for the research directions of subsequent combined treatments.
[1] | Bazarbachi, A., Plumelle, Y., Carlos Ramos, J., Tortevoye, P., Otrock, Z., Taylor, G., et al. (2010) Meta-Analysis on the Use of Zidovudine and Interferon-Alfa in Adult T-Cell Leukemia/Lymphoma Showing Improved Survival in the Leukemic Subtypes. Journal of Clinical Oncology, 28, 4177-4183. https://doi.org/10.1200/jco.2010.28.0669 |
[2] | Mitsuya, H., Weinhold, K.J., Furman, P.A., St Clair, M.H., Lehrman, S.N., Gallo, R.C., et al. (1985) 3’-Azido-3’-Deoxythymidine (BW A509U): An Antiviral Agent That Inhibits the Infectivity and Cytopathic Effect of Human T-Lymphotropic Virus Type III/Lymphadenopathy-Associated Virus in Vitro. Proceedings of the National Academy of Sciences of the United States of America, 82, 7096-7100. https://doi.org/10.1073/pnas.82.20.7096 |
[3] | Stambuk, D., Youle, M., Hawkins, D., et al. (1989) The Efficacy and Toxicity of Azidothymidine (AZT) in the Treatment of Patients with AIDS and AIDS-Related Complex (ARC): An Open Uncontrolled Treatment Study. The Quarterly Journal of Medicine, 262, 161-174. |
[4] | Zhang, X., Mar, V., Zhou, W., Harrington, L. and Robinson, M.O. (1999) Telomere Shortening and Apoptosis in Telomerase-Inhibited Human Tumor Cells. Genes & Development, 13, 2388-2399. https://doi.org/10.1101/gad.13.18.2388 |
[5] | Fang, X., Hu, T., Yin, H., Yang, J., Tang, W., Hu, S., et al. (2017) Differences in Telomerase Activity and the Effects of AZT in Aneuploid and Euploid Cells in Colon Cancer. International Journal of Oncology, 51, 525-532. https://doi.org/10.3892/ijo.2017.4043 |
[6] | Gomez, D.E., Tejera, A.M. and Olivero, O.A. (1998) Irreversible Telomere Shortening by 3’-Azido-2’,3’-Dideoxythymidine (AZT) Treatment. Biochemical and Biophysical Research Communications, 246, 107-110. https://doi.org/10.1006/bbrc.1998.8555 |
[7] | Gomez, D.E., Armando, R.G. and Alonso, D.F. (2012) AZT as a Telomerase Inhibitor. Frontiers in Oncology, 2, Article 113. https://doi.org/10.3389/fonc.2012.00113 |
[8] | Wang, H., Zhou, J., He, Q., Dong, Y. and Liu, Y. (2017) Azidothymidine Inhibits Cell Growth and Telomerase Activity and Induces DNA Damage in Human Esophageal Cancer. Molecular Medicine Reports, 15, 4055-4060. https://doi.org/10.3892/mmr.2017.6549 |
[9] | Datta, A. and Nicot, C. (2007) Telomere Attrition Induces a DNA Double-Strand Break Damage Signal That Reactivates P53 Transcription in HTLV-I Leukemic Cells. Oncogene, 27, 1135-1141. https://doi.org/10.1038/sj.onc.1210718 |
[10] | Datta, A., Bellon, M., Sinha-Datta, U., Bazarbachi, A., Lepelletier, Y., Canioni, D., et al. (2006) Persistent Inhibition of Telomerase Reprograms Adult T-Cell Leukemia to P53-Dependent Senescence. Blood, 108, 1021-1029. https://doi.org/10.1182/blood-2006-01-0067 |
[11] | Zhou, F., Liao, Z., Dai, J., Xiong, J., Xie, C., Luo, Z., et al. (2007) Radiosensitization Effect of Zidovudine on Human Malignant Glioma Cells. Biochemical and Biophysical Research Communications, 354, 351-356. https://doi.org/10.1016/j.bbrc.2006.12.180 |
[12] | Ji, X., Xie, C., Fang, M., Zhou, F., Zhang, W., Zhang, M., et al. (2006) Efficient Inhibition of Human Telomerase Activity by Antisense Oligonucleotides Sensitizes Cancer Cells to Radiotherapy. Acta Pharmacologica Sinica, 27, 1185-1191. https://doi.org/10.1111/j.1745-7254.2006.00417.x |
[13] | Fischl, M.A., Richman, D.D., Grieco, M.H., Gottlieb, M.S., Volberding, P.A., Laskin, O.L., et al. (1987) The Efficacy of Azidothymidine (AZT) in the Treatment of Patients with AIDS and Aids-Related Complex. A Double-Blind, Placebo-Controlled Trial. New England Journal of Medicine, 317, 185-191. https://doi.org/10.1056/nejm198707233170401 |
[14] | Connor, E.M., Sperling, R.S., Gelber, R., Kiselev, P., Scott, G., O’Sullivan, M.J., et al. (1994) Reduction of Maternal-Infant Transmission of Human Immunodeficiency Virus Type 1 with Zidovudine Treatment. New England Journal of Medicine, 331, 1173-1180. https://doi.org/10.1056/nejm199411033311801 |
[15] | Sperling, R.S., Shapiro, D.E., Coombs, R.W., Todd, J.A., Herman, S.A., McSherry, G.D., et al. (1996) Maternal Viral Load, Zidovudine Treatment, and the Risk of Transmission of Human Immunodeficiency Virus Type 1 from Mother to Infant. New England Journal of Medicine, 335, 1621-1629. https://doi.org/10.1056/nejm199611283352201 |
[16] | Isono, T., Ogawa, K. and Seto, A. (1990) Antiviral Effect of Zidovudine in the Experimental Model of Adult T Cell Leukemia in Rabbits. Leukemia Research, 14, 841-847. https://doi.org/10.1016/0145-2126(90)90172-6 |
[17] | Zhang, J., Balestrieri, E., Grelli, S., Matteucci, C., Pagnini, V., D’Agostini, C., et al. (2001) Efficacy of 3’-Azido 3’deoxythymidine (AZT) in Preventing HTLV-1 Transmission to Human Cord Blood Mononuclear Cells. Virus Research, 78, 67-78. https://doi.org/10.1016/s0168-1702(01)00285-4 |
[18] | Macchi, B., Grelli, S., Favalli, C., Mastino, A., Bonmassar, E., Faraoni, I., et al. (1997) AZT Inhibits the Transmission of Human T Cell Leukaemia/Lymphoma Virus Type I to Adult Peripheral Blood Mononuclear Cells in Vitro. Journal of General Virology, 78, 1007-1016. https://doi.org/10.1099/0022-1317-78-5-1007 |
[19] | Tejera, A.M., Alonso, D.F., Gomez, D.E. and Olivero, O.A. (2001) Chronic in Vitro Exposure to 3’-Azido-2’, 3’-Dideoxythymidine Induces Senescence and Apoptosis and Reduces Tumorigenicity of Metastatic Mouse Mammary Tumor Cells. Breast Cancer Research and Treatment, 65, 93-99. https://doi.org/10.1023/a:1006477730934 |
[20] | Namba, T., Kodama, R., Moritomo, S., Hoshino, T. and Mizushima, T. (2015) Zidovudine, an Anti-Viral Drug, Resensitizes Gemcitabine-Resistant Pancreatic Cancer Cells to Gemcitabine by Inhibition of the Akt-GSK3β-Snail Pathway. Cell Death & Disease, 6, e1795-e1795. https://doi.org/10.1038/cddis.2015.172 |
[21] | Dong, L., Gopalan, V., Holland, O. and Neuzil, J. (2020) Mitocans Revisited: Mitochondrial Targeting as Efficient Anti-Cancer Therapy. International Journal of Molecular Sciences, 21, Article 7941. https://doi.org/10.3390/ijms21217941 |
[22] | Lewis, W., Papoian, T., Gonzalez, B., et al. (1991) Mitochondrial Ultrastructural and Molecular Changes Induced by Zidovudine in Rat Hearts. Laboratory Investigation: A Journal of Technical Methods and Pathology, 2, 228-236. |
[23] | Lewis, W., Simpson, J.F. and Meyer, R.R. (1994) Cardiac Mitochondrial DNA Polymerase-γ Is Inhibited Competitively and Noncompetitively by Phosphorylated Zidovudine. Circulation Research, 74, 344-348. https://doi.org/10.1161/01.res.74.2.344 |
[24] | Lewis, W. and Dalakas, M.C. (1995) Mitochondrial Toxicity of Antiviral Drugs. Nature Medicine, 1, 417-422. https://doi.org/10.1038/nm0595-417 |
[25] | Barile, M., Valenti, D., Quagliariello, E. and Passarella, S. (1998) Mitochondria as Cell Targets of AZT (Zidovudine). General Pharmacology: The Vascular System, 31, 531-538. https://doi.org/10.1016/s0306-3623(98)00041-x |
[26] | Valenti, D., Barile, M. and Passarella, S. (2000) AZT Inhibition of the ADP/ATP Antiport in Isolated Rat Heart Mitochondria. International Journal of Molecular Medicine, 6, 93-99. https://doi.org/10.3892/ijmm.6.1.93 |
[27] | Benbrik, E., Chariot, P., Bonavaud, S., Ammi-Saı̈d, M., Frisdal, E., Rey, C., et al. (1997) Cellular and Mitochondrial Toxicity of Zidovudine (AZT), Didanosine (DDI) and Zalcitabine (DDC) on Cultured Human Muscle Cells. Journal of the Neurological Sciences, 149, 19-25. https://doi.org/10.1016/s0022-510x(97)05376-8 |
[28] | García de la Asunción, J., L. del Olmo, M., Gómez-Cambronero, L.G., Sastre, J., Pallardó, F.V. and Viña, J. (2004) AZT Induces Oxidative Damage to Cardiac Mitochondria: Protective Effect of Vitamins C and E. Life Sciences, 76, 47-56. https://doi.org/10.1016/j.lfs.2004.06.020 |
[29] | Darnell, J.E., Kerr, L.M. and Stark, G.R. (1994) Jak-stat Pathways and Transcriptional Activation in Response to IFNS and Other Extracellular Signaling Proteins. Science, 264, 1415-1421. https://doi.org/10.1126/science.8197455 |
[30] | Williams, B.R. (1999) PKR; a Sentinel Kinase for Cellular Stress. Oncogene, 18, 6112-6120. https://doi.org/10.1038/sj.onc.1203127 |
[31] | Trinchieri, G. (2003) Interleukin-12 and the Regulation of Innate Resistance and Adaptive Immunity. Nature Reviews Immunology, 3, 133-146. https://doi.org/10.1038/nri1001 |
[32] | Garbe, C. and Krasagakis, K. (1993) Effects of Interferons and Cytokines on Melanoma Cells. Journal of Investigative Dermatology, 100, 239S-244S. https://doi.org/10.1111/1523-1747.ep12465407 |
[33] | Gresser, I., Maury, C., Bandu, M., Foiret, D., Trojan, J. and Uriel, J. (1984) Inhibitory Effect of Mouse Interferon on the Growth of an Embryonal Carcinoma in Mice. Journal of Interferon Research, 4, 375-381. https://doi.org/10.1089/jir.1984.4.375 |
[34] | Sherwood, L.M., Parris, E.E. and Folkman, J. (1971) Tumor Angiogenesis: Therapeutic Implications. New England Journal of Medicine, 285, 1182-1186. https://doi.org/10.1056/nejm197111182852108 |
[35] | Mosmann, T.R. and Coffman, R.L. (1989) TH1 and TH2 Cells: Different Patterns of Lymphokine Secretion Lead to Different Functional Properties. Annual Review of Immunology, 7, 145-173. https://doi.org/10.1146/annurev.iy.07.040189.001045 |
[36] | Jego, G., Palucka, A.K., Blanck, J., Chalouni, C., Pascual, V. and Banchereau, J. (2003) Plasmacytoid Dendritic Cells Induce Plasma Cell Differentiation through Type I Interferon and Interleukin 6. Immunity, 19, 225-234. https://doi.org/10.1016/s1074-7613(03)00208-5 |
[37] | Nathan, C. and Shiloh, M.U. (2000) Reactive Oxygen and Nitrogen Intermediates in the Relationship between Mammalian Hosts and Microbial Pathogens. Proceedings of the National Academy of Sciences of the United States of America, 97, 8841-8848. https://doi.org/10.1073/pnas.97.16.8841 |
[38] | Marcellin, P., Chang, T., Lim, S.G., Tong, M.J., Sievert, W., Shiffman, M.L., et al. (2003) Adefovir Dipivoxil for the Treatment of Hepatitis B e Antigen-Positive Chronic Hepatitis B. New England Journal of Medicine, 348, 808-816. https://doi.org/10.1056/nejmoa020681 |
[39] | Ghany, M.G., Strader, D.B., Thomas, D.L. and Seeff, L.B. (2009) Diagnosis, Management, and Treatment of Hepatitis C: An Update. Hepatology, 49, 1335-1374. https://doi.org/10.1002/hep.22759 |
[40] | Toomey, N.L., Deyev, V.V., Wood, C., Boise, L.H., Scott, D., Liu, L.H., et al. (2001) Induction of a TRAIL Mediated Suicide Program by Interferon α in Primary Effusion Lymphoma. Oncogene, 20, 7029-7040. https://doi.org/10.1038/sj.onc.1204895 |
[41] | Feng, X., Vander Heyden, N. and Ratner, L. (2003) αInterferon Inhibits Human T-Cell Leukemia Virus Type 1 Assembly by Preventing Gag Interaction with Rafts. Journal of Virology, 77, 13389-13395. https://doi.org/10.1128/jvi.77.24.13389-13395.2003 |
[42] | Daenke, S., Kermode, A.G., Hall, S.E., Taylor, G., Weber, J., Nightingale, S., et al. (1996) High Activated and Memory Cytotoxic T-Cell Responses to HTLV-1 in Healthy Carriers and Patients with Tropical Spastic Paraparesis. Virology, 217, 139-146. https://doi.org/10.1006/viro.1996.0101 |
[43] | Olière, S., Hernandez, E., Lézin, A., Arguello, M., Douville, R., Nguyen, T.L., et al. (2010) HTLV-1 Evades Type I Interferon Antiviral Signaling by Inducing the Suppressor of Cytokine Signaling 1 (SOCS1). PLOS Pathogens, 6, e1001177. https://doi.org/10.1371/journal.ppat.1001177 |
[44] | Wang, J., Yang, S., Liu, L., Wang, H. and Yang, B. (2017) HTLV-1 Tax Impairs K63-Linked Ubiquitination of STING to Evade Host Innate Immunity. Virus Research, 232, 13-21. https://doi.org/10.1016/j.virusres.2017.01.016 |
[45] | Zhang, J., Yamada, O., Kawagishi, K., Araki, H., Yamaoka, S., Hattori, T., et al. (2008) Human T-Cell Leukemia Virus Type 1 Tax Modulates Interferon-Α Signal Transduction through Competitive Usage of the Coactivator CBP/p300. Virology, 379, 306-313. https://doi.org/10.1016/j.virol.2008.06.035 |
[46] | Mantlo, E., Bukreyeva, N., Maruyama, J., Paessler, S. and Huang, C. (2020) Antiviral Activities of Type I Interferons to SARS-CoV-2 Infection. Antiviral Research, 179, Article ID: 104811. https://doi.org/10.1016/j.antiviral.2020.104811 |
[47] | Sallard, E., Lescure, F., Yazdanpanah, Y., Mentre, F. and Peiffer-Smadja, N. (2020) Type 1 Interferons as a Potential Treatment against COVID-19. Antiviral Research, 178, Article ID: 104791. https://doi.org/10.1016/j.antiviral.2020.104791 |
[48] | Quesada, J.R., Reuben, J., Manning, J.T., Hersh, E.M. and Gutterman, J.U. (1984) α Interferon for Induction of Remission in Hairy-Cell Leukemia. New England Journal of Medicine, 310, 15-18. https://doi.org/10.1056/nejm198401053100104 |
[49] | Quesada, J., Hersh, E., Manning, J., Reuben, J., Keating, M., Schnipper, E., et al. (1986) Treatment of Hairy Cell Leukemia with Recombinant α-Interferon. Blood, 68, 493-497. https://doi.org/10.1182/blood.v68.2.493.493 |
[50] | Hughes, T.P., Hochhaus, A., Branford, S., Müller, M.C., Kaeda, J.S., Foroni, L., et al. (2010) Long-Term Prognostic Significance of Early Molecular Response to Imatinib in Newly Diagnosed Chronic Myeloid Leukemia: An Analysis from the International Randomized Study of Interferon and STI571 (IRIS). Blood, 116, 3758-3765. https://doi.org/10.1182/blood-2010-03-273979 |
[51] | Kirkwood, J.M., Ibrahim, J.G., Sosman, J.A., Sondak, V.K., Agarwala, S.S., Ernstoff, M.S., et al. (2001) High-Dose Interferon Alfa-2b Significantly Prolongs Relapse-Free and Overall Survival Compared with the GM2-KLH/QS-21 Vaccine in Patients with Resected Stage IIB-III Melanoma: Results of Intergroup Trial E1694/s9512/c509801. Journal of Clinical Oncology, 19, 2370-2380. https://doi.org/10.1200/jco.2001.19.9.2370 |
[52] | St Clair, M.H., Richards, C.A., Spector, T., Weinhold, K.J., Miller, W.H., Langlois, A.J., et al. (1987) 3’-Azido-3’-Deoxythymidine Triphosphate as an Inhibitor and Substrate of Purified Human Immunodeficiency Virus Reverse Transcriptase. Antimicrobial Agents and Chemotherapy, 31, 1972-1977. https://doi.org/10.1128/aac.31.12.1972 |
[53] | Larder, B.A., Darby, G. and Richman, D.D. (1989) HIV with Reduced Sensitivity to Zidovudine (AZT) Isolated during Prolonged Therapy. Science, 243, 1731-1734. https://doi.org/10.1126/science.2467383 |
[54] | Zuo, X., Zhou, R., Yang, S. and Ma, G. (2022) HTLV‐1 Persistent Infection and ATLL Oncogenesis. Journal of Medical Virology, 95, e28424. https://doi.org/10.1002/jmv.28424 |
[55] | Shafiee, A., Seighali, N., Taherzadeh-Ghahfarokhi, N., Mardi, S., Shojaeian, S., Shadabi, S., et al. (2023) Zidovudine and Interferon Alfa Based Regimens for the Treatment of Adult T-Cell Leukemia/Lymphoma (ATLL): A Systematic Review and Meta-Analysis. Virology Journal, 20, Article No. 118. https://doi.org/10.1186/s12985-023-02077-0 |
[56] | Gill, P.S., Harrington, W., Kaplan, M.H., Ribeiro, R.C., Bennett, J.M., Liebman, H.A., et al. (1995) Treatment of Adult T-Cell Leukemia-Lymphoma with a Combination of Interferon Alfa and Zidovudine. New England Journal of Medicine, 332, 1744-1748. https://doi.org/10.1056/nejm199506293322603 |
[57] | Matutes, E., Taylor, G.P., Cavenagh, J., Pagliuca, A., Bareford, D., Domingo, A., et al. (2001) Interferon Α and Zidovudine Therapy in Adult T‐Cell Leukaemia Lymphoma: Response and Outcome in 15 Patients. British Journal of Haematology, 113, 779-784. https://doi.org/10.1046/j.1365-2141.2001.02794.x |
[58] | Hermine, O., Allard, I., Lévy, V., Arnulf, B., Gessain, A. and Bazarbachi, A. (2002) A Prospective Phase II Clinical Trial with the Use of Zidovudine and Interferon-α in the Acute and Lymphoma Forms of Adult T-Cell Leukemia/Lymphoma. The Hematology Journal, 3, 276-282. https://doi.org/10.1038/sj.thj.6200195 |
[59] | Kchour, G., Makhoul, N.J., Mahmoudi, M., Kooshyar, M., Shirdel, A., Rastin, M., et al. (2007) Zidovudine and Interferon-α Treatment Induces a High Response Rate and Reduces HTLV-1 Proviral Load and VEGF Plasma Levels in Patients with Adult T-Cell Leukemia from North East Iran. Leukemia & Lymphoma, 48, 330-336. https://doi.org/10.1080/10428190601071717 |
[60] | Alizadeh, A.A., Bohen, S.P., Lossos, C., Martinez-Climent, J.A., Ramos, J.C., Cubedo-Gil, E., et al. (2010) Expression Profiles of Adult T-Cell Leukemia-Lymphoma and Associations with Clinical Responses to Zidovudine and Interferon α. Leukemia & Lymphoma, 51, 1200-1216. https://doi.org/10.3109/10428191003728628 |
[61] | Bazarbachi, A., Nasr, R., El-Sabban, M., Mahé, A., Mahieux, R., Gessain, A., et al. (2000) Evidence against a Direct Cytotoxic Effect of α Interferon and Zidovudine in HTLV-I Associated Adult T Cell Leukemia/Lymphoma. Leukemia, 14, 716-721. https://doi.org/10.1038/sj.leu.2401742 |
[62] | Macchi, B., Balestrieri, E., Frezza, C., Grelli, S., Valletta, E., Marçais, A., et al. (2017) Quantification of HTLV-1 Reverse Transcriptase Activity in ATL Patients Treated with Zidovudine and Interferon-α. Blood Advances, 1, 748-752. https://doi.org/10.1182/bloodadvances.2016001370 |
[63] | Kinpara, S., Kijiyama, M., Takamori, A., Hasegawa, A., Sasada, A., Masuda, T., et al. (2013) Interferon-α (IFN-α) Suppresses HTLV-1 Gene Expression and Cell Cycling, While IFN-α Combined with Zidovudin Induces p53 Signaling and Apoptosis in HTLV-1-Infected Cells. Retrovirology, 10, Article No. 52. https://doi.org/10.1186/1742-4690-10-52 |
[64] | Kchour, G., Tarhini, M., Kooshyar, M., El Hajj, H., Wattel, E., Mahmoudi, M., et al. (2009) Phase 2 Study of the Efficacy and Safety of the Combination of Arsenic Trioxide, Interferon α, and Zidovudine in Newly Diagnosed Chronic Adult T-Cell Leukemia/Lymphoma (ATL). Blood, 113, 6528-6532. https://doi.org/10.1182/blood-2009-03-211821 |
[65] | Hachiman, M., Yoshimitsu, M., Ezinne, C., Kuroki, A., Kozako, T. and Arima, N. (2018) In Vitro Effects of Arsenic Trioxide, Interferon α and Zidovudine in Adult T Cell Leukemia/Lymphoma Cells. Oncology Letters, 16, 1305-1311. https://doi.org/10.3892/ol.2018.8771 |
[66] | Reis, I., Manrique, M., Cabral, L., Diaz, L., Toomey, N., Ruiz, P., et al. (2012) The Combination of AZT/Interferon-α Therapy with the HDAC Inhibitor Valproic Acid for the Treatment of Adult T-Cell Leukemia/Lymphoma. Blood, 120, 4877-4877. https://doi.org/10.1182/blood.v120.21.4877.4877 |
[67] | Volberding, P.A., Lagakos, S.W., Koch, M.A., Pettinelli, C., Myers, M.W., Booth, D.K., et al. (1990) Zidovudine in Asymptomatic Human Immunodeficiency Virus Infection. New England Journal of Medicine, 322, 941-949. https://doi.org/10.1056/nejm199004053221401 |
[68] | Fischl, M.A., Finkelstein, D.M., He, W., Powderly, W.G., Triozzi, P.L. and Steigbigel, R.T. (1996) A Phase II Study of Recombinant Human Interferon-α2a and Zidovudine in Patients with AIDS-Related Kaposi’s Sarcoma. Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology, 11, 379-384. https://doi.org/10.1097/00042560-199604010-00008 |
[69] | Peng, Y., Zong, Y., Wang, D., Chen, J., Chen, Z., Peng, F., et al. (2023) Current Drugs for HIV-1: From Challenges to Potential in HIV/AIDS. Frontiers in Pharmacology, 14, Article 1294966. https://doi.org/10.3389/fphar.2023.1294966 |
[70] | Deeks, S.G., Lewin, S.R. and Havlir, D.V. (2013) The End of AIDS: HIV Infection as a Chronic Disease. The Lancet, 382, 1525-1533. https://doi.org/10.1016/s0140-6736(13)61809-7 |
[71] | Groopman, J.E., Gottlieb, M.S., Goodman, J., Mitsuyasu, R.T., Conant, M.A., Prince, H., et al. (1984) Recombinant α-2 Interferon Therapy for Kaposi’s Sarcoma Associated with the Acquired Immunodeficiency Syndrome. Annals of Internal Medicine, 100, 671-676. https://doi.org/10.7326/0003-4819-100-5-671 |
[72] | Mitsuyasu, R.T. (1991) Interferon α in the Treatment of Aids‐Related Kaposi’s Sarcoma. British Journal of Haematology, 79, 69-73. https://doi.org/10.1111/j.1365-2141.1991.tb08124.x |
[73] | Berk, L., Schalm, S.W. and Heijtink, R.A. (1992) Zidovudine Inhibits Hepatitis B Virus Replication. Antiviral Research, 19, 111-118. https://doi.org/10.1016/0166-3542(92)90070-l |
[74] | Bingfa, X., Qinglin, F., Hui, H., Canjun, W., Wei, W. and Lihua, S. (2009) Anti-Hepatitis B Virus Activity and Mechanisms of Recombinant Human Serum Albumin-Interferon-α-2b Fusion Protein in Vitro and in Vivo. Pharmacology, 83, 323-332. https://doi.org/10.1159/000215588 |
[75] | Janssen, H.L.A., Berk, L., Heijtink, R.A., Ten Kate, F.J.W. and Schalm, S.W. (1993) Interferon-α and Zidovudine Combination Therapy for Chronic Hepatitis B: Results of a Randomized, Placebo-Controlled Trial. Hepatology, 17, 383-388. https://doi.org/10.1002/hep.1840170306 |
[76] | 张希顺, 申雪粉, 王雷, 等. 聚乙二醇干扰素α-2a注射液联合恩替卡韦治疗乙型病毒性肝炎的临床疗效分析[J]. 临床医药文献电子杂志, 2019, 6(1): 32-33. |
[77] | 张惠勇, 卢燕辉, 吴秀欣. 聚乙二醇干扰素α2a联合替诺福韦对耐药性乙肝 患者肝功能及HBV-DNA转阴率的影响[J]. 中外医疗, 2019, 38(6): 1-3. |
[78] | 张程. 派罗欣联合利巴韦林治疗慢性丙肝的疗效观察[J]. 中国冶金工业医学杂志, 2024, 41(1): 75-76. |
[79] | 赵维佳, 邓玉洁. 索磷布韦维帕他韦治疗慢性丙肝及缓解肝脏纤维化的临床效果观察[J]. 贵州医药, 2024, 48(5): 725-727. |
[80] | Mogahed, E.A., El-Karaksy, H., Abdullatif, H., Yasin, N.A., Nagy, A., Alem, S.A., et al. (2021) Improvement in Liver Stiffness in Pediatric Patients with Hepatitis C Virus after Treatment with Direct Acting Antivirals. The Journal of Pediatrics, 233, 126-131. https://doi.org/10.1016/j.jpeds.2021.02.012 |
[81] | Feinman, S.V., Berris, B., Sooknanan, R., Fernandes, B. and Bojarski, S. (1992) Effects of Interferon-α Therapy on Serum and Liver HBV DNA in Patients with Chronic Hepatitis B. Digestive Diseases and Sciences, 37, 1477-1482. https://doi.org/10.1007/bf01296489 |
[82] | Ruprecht, R.M., Chou, T.C., Chipty, F., et al. (1990) Interferon-α and 3’-Azido-3’-Deoxythymidine Are Highly Synergistic in Mice and Prevent Viremia after Acute Retrovirus Exposure. Journal of Acquired Immune Deficiency Syndromes, 6, 591-600. |
[83] | Wu, W., Rochford, R., Toomey, L., Harrington, W. and Feuer, G. (2005) Inhibition of HHV-8/KSHV Infected Primary Effusion Lymphomas in NOD/SCID Mice by Azidothymidine and Interferon-α. Leukemia Research, 29, 545-555. https://doi.org/10.1016/j.leukres.2004.11.010 |