全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于Stacking多模型融合的家禽类健康状况检测
Poultry Health Status Detection Based on Stacking Multi Model Fusion

DOI: 10.12677/csa.2025.153071, PP. 189-194

Keywords: 家禽健康检测,Stacking融合,深度学习,图像分析,智能农业
Poultry Health Testing
, Stacking Fusion, Deep Learning, Image Analysis, Intelligent Agriculture

Full-Text   Cite this paper   Add to My Lib

Abstract:

传统的家禽卫生监测方式主要是靠人工操作,既效率低、主观性强,又很难满足现代集约化养殖的需要。本文阐述以Stacking多模型融合技术为基础的禽类健康检测系统,通过CNN、ResNet、AlexNet、VGG等深度学习模型的融合,使禽类粪便图像分类的精确性、系统实时性和轻量化性能得到显著提升。实验结果表明,该系统的总体准确度为0.9919,优于单一模型,验证了多模型集成的有效性。文章还从监测结果出发,对家禽养殖业进行资源利用的策略分析,技术上的支持使家禽养殖业的智能化、可持续发展,此外系统还可以向其他农业影像分析场景进行推广,实现应用的广泛性。
Traditional poultry hygiene monitoring methods mainly rely on manual operation, which is inefficient, subjective, and difficult to meet modern requirements the need for intensive farming. This article describes a poultry health detection system based on Stacking multi model fusion technology. Through the fusion of deep learning models such as CNN, ResNet, AlexNet, and VGG, the accuracy, real-time performance, and lightweight performance of poultry manure image classification have been significantly improved. The experimental results show that the overall accuracy of the system is 0.9919, which is better than a single model and verifies the effectiveness of multi model integration. The article also analyzes the strategy of resource utilization in the poultry farming industry based on monitoring results. Technical support enables the intelligent and sustainable development of the poultry farming industry. In addition, the system can be promoted to other agricultural image analysis scenarios to achieve widespread application.

References

[1]  李强. 家禽健康监测技术发展现状[J]. 农业科学学报, 2020, 38(4): 134-139.
[2]  黄俊杰, 高丽娜, 等. 家禽粪便资源化利用研究现状与展望[J]. 环境科学学报, 2019, 39(8): 2456-2463.
[3]  Smith, J. and Doe, R. (2020) Biometric Monitoring in Poultry: Opportunities and Challenges. Poultry Science, 99, 5784-5792.
[4]  张力. 家禽疾病监测的现状与挑战[J]. 现代畜牧业, 2018, 45(7): 89-93.
[5]  Tan, W., Chen, X. and Zhang, L. (2023) Deep Learning-Based Poultry Feces Analysis. Computers and Electronics in Agriculture, 209, Article 107779.
[6]  Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2017) Imagenet Classification with Deep Convolutional Neural Networks. Communications of the ACM, 60, 84-90.
https://doi.org/10.1145/3065386

[7]  何凯明, 张翔, 等. 深度残差学习在图像识别中的应用[C]//IEEE Computer Society. 计算机视觉与模式识别会议. Washington: IEEE计算机学会出版社, 2016: 770-778.
[8]  Liang, H., Zhang, Z. and Chen, L. (2021) Sensor-Based Monitoring Systems in Poultry Farming: A Review. Biosystems Engineering, 202, 45-59.
[9]  Sun, Q. and Xu, W. (2021) Multi-Model Fusion in Poultry Disease Diagnosis. Artificial Intelligence in Agriculture, 4, 56-67.
[10]  Liu, J., Wang, Y. and Xu, F. (2020) Lightweight Deep Learning Models for Poultry Disease Diagnosis. Computers and Electronics in Agriculture, 169, Article 105234.
[11]  Wang, T., Li, S. and Zhao, Q. (2022) Real-Time Monitoring Systems for Poultry Health: A Case Study. Smart Agriculture, 15, 93-112.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133