|
胆汁酸代谢在消化系统肿瘤中的影响及作用机制研究进展
|
Abstract:
胆汁酸(BAs)对消化系统肿瘤的发生和发展具有重要影响。目前的研究已经证实,胆汁酸及其受体,如法尼醇X受体(FXR)和G蛋白偶联受体TGR5,在多种肿瘤的发生和发展中扮演着关键角色。此外,胆汁酸通过调节肿瘤微环境中的炎症反应和免疫反应,进一步影响肿瘤的进程。本文的目的是阐述胆汁酸与消化系统肿瘤发生发展的关系及其作用机制,主要通过氧化应激、DNA损伤、炎症反应、激活信号通路以及改变肿瘤微环境等途径,促进或抑制肿瘤的发展。我们总结了目前关于此领域研究的局限性,并为今后治疗肿瘤诊断标志物及治疗靶点提供新思路。
Bile acids (BAs) have an important impact on the occurrence and development of digestive system tumors. Current studies have confirmed that bile acids and their receptors, such as farnesol X receptor (FXR) and G protein-coupled receptor TGR5, play a key role in the development and progression of different tumors. In addition, bile acids further influence tumor progression by modulating inflammatory and immune responses in the tumor microenvironment. The purpose of this paper is to elucidate the relationship between bile acids and the development and mechanism of different digestive system tumors, which can promote or inhibit the development of tumors through oxidative stress, DNA damage, inflammatory response, activation of signaling pathways, and change of tumor microenvironment. We summarize the limitations of current research in this area, and provide new ideas for the future treatment of tumor diagnostic markers and therapeutic targets.
[1] | Fiorucci, S., Carino, A., Baldoni, M., Santucci, L., Costanzi, E., Graziosi, L., et al. (2020) Bile Acid Signaling in Inflammatory Bowel Diseases. Digestive Diseases and Sciences, 66, 674-693. https://doi.org/10.1007/s10620-020-06715-3 |
[2] | Wang, Y., Gao, X., Zhang, X., Xiao, Y., Huang, J., Yu, D., et al. (2019) Gut Microbiota Dysbiosis Is Associated with Altered Bile Acid Metabolism in Infantile Cholestasis. mSystems, 4, e00463-19. https://doi.org/10.1128/msystems.00463-19 |
[3] | Kühn, T., Stepien, M., López‐Nogueroles, M., et al. (2020) Prediagnostic Plasma Bile Acid Levels and Colon Cancer Risk: A Prospective Study. Journal of the National Cancer Institute, 112, 516-524. |
[4] | Yu, B., Peng, X.H., Wang, L.Y., et al. (2019) Abnormality of Intestinal Cholesterol Absorption in Apc (Min/+) Mice with Colon Cancer Cachexia. International Journal of Clinical and Experimental Pathology, 12, 759-767. |
[5] | Canovai, E., Farré, R., Accarie, A., Lauriola, M., De Hertogh, G., Vanuytsel, T., et al. (2023) INT-767—A Dual Farnesoid-X Receptor (FXR) and Takeda G Protein-Coupled Receptor-5 (TGR5) Agonist Improves Survival in Rats and Attenuates Intestinal Ischemia Reperfusion Injury. International Journal of Molecular Sciences, 24, Article 14881. https://doi.org/10.3390/ijms241914881 |
[6] | Jiao, N., Baker, S.S., Chapa-Rodriguez, A., Liu, W., Nugent, C.A., Tsompana, M., et al. (2017) Suppressed Hepatic Bile Acid Signalling Despite Elevated Production of Primary and Secondary Bile Acids in NAFLD. Gut, 67, 1881-1891. https://doi.org/10.1136/gutjnl-2017-314307 |
[7] | Fleishman, J.S. and Kumar, S. (2024) Bile Acid Metabolism and Signaling in Health and Disease: Molecular Mechanisms and Therapeutic Targets. Signal Transduction and Targeted Therapy, 9, Article No. 97. https://doi.org/10.1038/s41392-024-01811-6 |
[8] | Ferrell, J.M., Boehme, S., Li, F. and Chiang, J.Y.L. (2016) Cholesterol 7α-Hydroxylase-Deficient Mice Are Protected from High-Fat/High-Cholesterol Diet-Induced Metabolic Disorders. Journal of Lipid Research, 57, 1144-1154. https://doi.org/10.1194/jlr.m064709 |
[9] | Chiang, J.Y.L. (2017) Bile Acid Metabolism and Signaling in Liver Disease and Therapy. Liver Research, 1, 3-9. https://doi.org/10.1016/j.livres.2017.05.001 |
[10] | Chiang, J.Y.L. and Ferrell, J.M. (2019) Bile Acids as Metabolic Regulators and Nutrient Sensors. Annual Review of Nutrition, 39, 175-200. https://doi.org/10.1146/annurev-nutr-082018-124344 |
[11] | Sugiyama, Y., Yamamoto, K., Honda, T., Kato, A., Muto, H., Yokoyama, S., et al. (2023) Impact of Elobixibat on Liver Tumors, Microbiome, and Bile Acid Levels in a Mouse Model of Nonalcoholic Steatohepatitis. Hepatology International, 17, 1378-1392. https://doi.org/10.1007/s12072-023-10581-2 |
[12] | Nagahashi, M., Takabe, K., Liu, R., Peng, K., Wang, X., Wang, Y., et al. (2015) Conjugated Bile Acid-Activated S1P Receptor 2 Is a Key Regulator of Sphingosine Kinase 2 and Hepatic Gene Expression. Hepatology, 61, 1216-1226. https://doi.org/10.1002/hep.27592 |
[13] | Zhao, H., Shang, L., Zhang, Y., Liang, Z., Wang, N., Zhang, Q., et al. (2024) IL-17A Inhibitors Alleviate Psoriasis with Concomitant Restoration of Intestinal/Skin Microbiota Homeostasis and Altered Microbiota Function. Frontiers in Immunology, 15, Article 1344963. https://doi.org/10.3389/fimmu.2024.1344963 |
[14] | Nenkov, M., Shi, Y., Ma, Y., Gaßler, N. and Chen, Y. (2023) Targeting Farnesoid X Receptor in Tumor and the Tumor Microenvironment: Implication for Therapy. International Journal of Molecular Sciences, 25, Article 6. https://doi.org/10.3390/ijms25010006 |
[15] | Are, V.S., Gromski, M.A., Akisik, F., Vilar-Gomez, E., Lammert, C., Ghabril, M., et al. (2024) Primary Sclerosing Cholangitis Limited to Intrahepatic Bile Ducts Has Distinctly Better Prognosis. Digestive Diseases and Sciences, 69, 1421-1429. https://doi.org/10.1007/s10620-023-08260-1 |
[16] | Helal, M., Yan, C. and Gong, Z. (2021) Stimulation of Hepatocarcinogenesis by Activated Cholangiocytes via Il17a/f1 Pathway in Kras Transgenic Zebrafish Model. Scientific Reports, 11, Article No. 1372. https://doi.org/10.1038/s41598-020-80621-6 |
[17] | Sarkar, J., Aoki, H., Wu, R., Aoki, M., Hylemon, P., Zhou, H., et al. (2022) Conjugated Bile Acids Accelerate Progression of Pancreatic Cancer Metastasis via S1PR2 Signaling in Cholestasis. Annals of Surgical Oncology, 30, 1630-1641. https://doi.org/10.1245/s10434-022-12806-4 |
[18] | Feng, H. and Chen, Y. (2016) Role of Bile Acids in Carcinogenesis of Pancreatic Cancer: An Old Topic with New Perspective. World Journal of Gastroenterology, 22, 7463-7477. https://doi.org/10.3748/wjg.v22.i33.7463 |
[19] | Phelan, J.P., Reen, F.J., Caparros-Martin, J.A., O’Connor, R. and O’Gara, F. (2017) Rethinking the Bile Acid/Gut Microbiome Axis in Cancer. Oncotarget, 8, 115736-115747. https://doi.org/10.18632/oncotarget.22803 |
[20] | Thomas, R.M. and Jobin, C. (2019) Microbiota in Pancreatic Health and Disease: The Next Frontier in Microbiome Research. Nature Reviews Gastroenterology & Hepatology, 17, 53-64. https://doi.org/10.1038/s41575-019-0242-7 |
[21] | Winston, J.A. and Theriot, C.M. (2019) Diversification of Host Bile Acids by Members of the Gut Microbiota. Gut Microbes, 11, 158-171. https://doi.org/10.1080/19490976.2019.1674124 |
[22] | Chai, J., Norng, M., Modak, C., Reavis, K.M., Mouazzen, W. and Pham, J. (2010) CCN1 Induces a Reversible Epithelial-Mesenchymal Transition in Gastric Epithelial Cells. Laboratory Investigation, 90, 1140-1151. https://doi.org/10.1038/labinvest.2010.101 |
[23] | Dang, T., Modak, C., Meng, X., Wu, J., Narvaez, R. and Chai, J. (2017) CCN1 Sensitizes Esophageal Cancer Cells to Trail-Mediated Apoptosis. Experimental Cell Research, 361, 163-169. https://doi.org/10.1016/j.yexcr.2017.10.015 |
[24] | Heck, A.L., Mishra, S., Prenzel, T., Feulner, L., Achhammer, E., Särchen, V., et al. (2021) Selective HSP90β Inhibition Results in TNF and TRAIL Mediated HIF1α Degradation. Immunobiology, 226, Article ID: 152070. https://doi.org/10.1016/j.imbio.2021.152070 |
[25] | Mukaisho, K., Kanai, S., Kushima, R., Nakayama, T., Hattori, T. and Sugihara, H. (2019) Barretts’s Carcinogenesis. Pathology International, 69, 319-330. https://doi.org/10.1111/pin.12804 |
[26] | Molendijk, J., Kolka, C.M., Cairns, H., Brosda, S., Mohamed, A., Shah, A.K., et al. (2022) Elevation of Fatty Acid Desaturase 2 in Esophageal Adenocarcinoma Increases Polyunsaturated Lipids and May Exacerbate Bile Acid‐induced DNA Damage. Clinical and Translational Medicine, 12, e810. https://doi.org/10.1002/ctm2.810 |
[27] | Meng, X., Chang, Z., Che, N., Wu, J., Dang, T. and Chai, J. (2020) Acid/Bile Exposure Triggers Trail-Mediated Apoptosis in Esophageal Cancer Cells by Suppressing the Decoy Receptors and C-FLIPR. The International Journal of Biochemistry & Cell Biology, 122, Article ID: 105736. https://doi.org/10.1016/j.biocel.2020.105736 |
[28] | Chen, H., Hu, Y., Lu, N. and Zhu, Y. (2020) Caudal Type Homeoboxes as a Driving Force in Helicobacter pylori Infection-Induced Gastric Intestinal Metaplasia. Gut Microbes, 12, Article ID: 1809331. https://doi.org/10.1080/19490976.2020.1809331 |
[29] | Bhat, A.A., Lu, H., Soutto, M., Capobianco, A., Rai, P., Zaika, A., et al. (2018) Exposure of Barrett’s and Esophageal Adenocarcinoma Cells to Bile Acids Activates EGFR-STAT3 Signaling Axis via Induction of Ape1. Oncogene, 37, 6011-6024. https://doi.org/10.1038/s41388-018-0388-8 |
[30] | Lozupone, C.A., Stombaugh, J.I., Gordon, J.I., Jansson, J.K. and Knight, R. (2012) Diversity, Stability and Resilience of the Human Gut Microbiota. Nature, 489, 220-230. https://doi.org/10.1038/nature11550 |
[31] | Jin, D., Huang, K., Xu, M., Hua, H., Ye, F., Yan, J., et al. (2022) Deoxycholic Acid Induces Gastric Intestinal Metaplasia by Activating STAT3 Signaling and Disturbing Gastric Bile Acids Metabolism and Microbiota. Gut Microbes, 14, Article: 2120744. https://doi.org/10.1080/19490976.2022.2120744 |
[32] | Bernstein, C., Holubec, H., Bhattacharyya, A.K., Nguyen, H., Payne, C.M., Zaitlin, B., et al. (2011) Carcinogenicity of Deoxycholate, a Secondary Bile Acid. Archives of Toxicology, 85, 863-871. https://doi.org/10.1007/s00204-011-0648-7 |
[33] | Huang, X., Zhao, W. and Huang, W. (2014) FXR and Liver Carcinogenesis. Acta Pharmacologica Sinica, 36, 37-43. https://doi.org/10.1038/aps.2014.117 |
[34] | Zhuang, Y., Ortega-Ribera, M., Thevkar Nagesh, P., Joshi, R., Huang, H., Wang, Y., et al. (2023) Bile Acid-Induced IRF3 Phosphorylation Mediates Cell Death, Inflammatory Responses, and Fibrosis in Cholestasis-Induced Liver and Kidney Injury via Regulation of ZBP1. Hepatology, 79, 752-767. https://doi.org/10.1097/hep.0000000000000611 |
[35] | Nagahashi, M., Yuza, K., Hirose, Y., Nakajima, M., Ramanathan, R., Hait, N.C., et al. (2016) The Roles of Bile Acids and Sphingosine-1-Phosphate Signaling in the Hepatobiliary Diseases. Journal of Lipid Research, 57, 1636-1643. https://doi.org/10.1194/jlr.r069286 |
[36] | Reich, M., Deutschmann, K., Sommerfeld, A., Klindt, C., Kluge, S., Kubitz, R., et al. (2015) TGR5 Is Essential for Bile Acid-Dependent Cholangiocyte Proliferation in Vivo and in Vitro. Gut, 65, 487-501. https://doi.org/10.1136/gutjnl-2015-309458 |
[37] | Terabe, M. and Berzofsky, J.A. (2016) NKT Cells in Tumor Immunity. Encyclopedia of Immunobiology, 4, 460-469. https://doi.org/10.1016/b978-0-12-374279-7.17010-9 |
[38] | Ma, C., Han, M., Heinrich, B., Fu, Q., Zhang, Q., Sandhu, M., et al. (2018) Gut Microbiome-Mediated Bile Acid Metabolism Regulates Liver Cancer via NKT Cells. Science, 360, eaan5931. https://doi.org/10.1126/science.aan5931 |
[39] | Olszak, T., An, D., Zeissig, S., Vera, M.P., Richter, J., Franke, A., et al. (2012) Microbial Exposure during Early Life Has Persistent Effects on Natural Killer T Cell Function. Science, 336, 489-493. https://doi.org/10.1126/science.1219328 |
[40] | Gándola, Y.B., Fontana, C., Bojorge, M.A., Luschnat, T.T., Moretton, M.A., et al. (2020) Concentration-Dependent Effects of Sodium Cholate and Deoxycholate Bile Salts on Breast Cancer Cells Proliferation and Survival. Molecular Biology Reports, 47, 3521-3539. https://doi.org/10.1007/s11033-020-05442-2 |