|
慢性炎症在食管癌发生发展中的作用及机制研究进展
|
Abstract:
食管癌是全球范围内高发且预后不良的恶性肿瘤之一。近年来,越来越多的研究表明,慢性炎症在食管癌的发生、发展和转移过程中扮演着关键角色。本文综述了慢性炎症在食管癌中的作用及其机制研究进展。胃酸/胆汁反流可诱发食管炎症,导致Barrett’s食管的形成。炎症细胞和炎性细胞因子,如IL-8、IL-6、TGF-β、IL-1β及TNF-α等,在食管炎、BE及EAC中发挥着关键作用。NF-κB和STAT3信号通路作为核心炎症信号通路,对食管癌的发生发展具有重要影响。此外,本文还讨论了未来的研究应深入探索炎症在食管癌进展中的机制,开发靶向药物和新的生物标志物,为食管癌的精准治疗提供新的策略与途径。
Esophageal cancer is one of the malignant tumors with high incidence and poor prognosis worldwide. In recent years, an increasing number of studies have indicated that chronic inflammation plays a crucial role in the occurrence, progression, and metastasis of esophageal cancer. This review article summarizes the role of chronic inflammation in esophageal cancer and the progress in research on its mechanisms. Gastroesophageal reflux of acid/bile can induce esophageal inflammation, leading to the formation of Barrett’s esophagus. Inflammatory cells and cytokines, such as IL-8, IL-6, TGF-β, IL-1β, and TNF-α, play key roles in esophagitis, BE (Barrett’s esophagus), and EAC (esophageal adenocarcinoma). The NF-κB and STAT3 signaling pathways, as core inflammatory pathways, significantly influence the development of esophageal cancer. Furthermore, this article discusses that future research should delve into the mechanisms of inflammation in the progression of esophageal cancer, develop targeted drugs and new biomarkers, and provide new strategies and approaches for precision treatment of esophageal cancer.
[1] | Lee, B., Hutchinson, R., Wong, H., Tie, J., Putoczki, T., Tran, B., et al. (2018) Emerging Biomarkers for Immunomodulatory Cancer Treatment of Upper Gastrointestinal, Pancreatic and Hepatic Cancers. Seminars in Cancer Biology, 52, 241-252. https://doi.org/10.1016/j.semcancer.2017.12.009 |
[2] | Elinav, E., Nowarski, R., Thaiss, C.A., Hu, B., Jin, C. and Flavell, R.A. (2013) Inflammation-Induced Cancer: Crosstalk between Tumours, Immune Cells and Microorganisms. Nature Reviews Cancer, 13, 759-771. https://doi.org/10.1038/nrc3611 |
[3] | Coussens, L.M. and Werb, Z. (2002) Inflammation and Cancer. Nature, 420, 860-867. https://doi.org/10.1038/nature01322 |
[4] | Poehlmann, A., Kuester, D., Malfertheiner, P., Guenther, T. and Roessner, A. (2012) Inflammation and Barrett’s Carcinogenesis. Pathology—Research and Practice, 208, 269-280. https://doi.org/10.1016/j.prp.2012.03.007 |
[5] | Newton, M., Bryan, R., Burnham, W.R. and Kamm, M.A. (1997) Evaluation of Helicobacter Pylori in Reflux Oesophagitis and Barrett’s Oesophagus. Gut, 40, 9-13. https://doi.org/10.1136/gut.40.1.9 |
[6] | Freedman, J., Lindqvist, M., Hellström, P.M., Granström, L. and Näslund, E. (2002) Presence of Bile in the Oesophagus Is Associated with Less Effective Oesophageal Motility. Digestion, 66, 42-48. https://doi.org/10.1159/000064420 |
[7] | Hopwood, D., Bateson, M.C., Milne, G. and Bouchier, I.A. (1981) Effects of Bile Acids and Hydrogen Ion on the Fine Structure of Oesophageal Epithelium. Gut, 22, 306-311. https://doi.org/10.1136/gut.22.4.306 |
[8] | Nehra, D., Howell, P., Williams, C.P., Pye, J.K. and Beynon, J. (1999) Toxic Bile Acids in Gastro-Oesophageal Reflux Disease: Influence of Gastric Acidity. Gut, 44, 598-602. https://doi.org/10.1136/gut.44.5.598 |
[9] | Souza, R.F., Huo, X., Mittal, V., Schuler, C.M., Carmack, S.W., Zhang, H.Y., et al. (2009) Gastroesophageal Reflux Might Cause Esophagitis through a Cytokine-Mediated Mechanism Rather than Caustic Acid Injury. Gastroenterology, 137, 1776-1784. https://doi.org/10.1053/j.gastro.2009.07.055 |
[10] | Isomoto, H., Wang, A., Mizuta, Y., Akazawa, Y., Ohba, K., Omagari, K., et al. (2003) Elevated Levels of Chemokines in Esophageal Mucosa of Patients with Reflux Esophagitis. The American Journal of Gastroenterology, 98, 551-556. https://doi.org/10.1111/j.1572-0241.2003.07303.x |
[11] | Oka, M., Attwood, S.E., Kaul, B., Smyrk, T.C. and DeMeester, T.R. (1992) Immunosuppression in Patients with Barrett’s Esophagus. Surgery, 112, 11-17. |
[12] | Ostrand-Rosenberg, S. (2008) Immune Surveillance: A Balance between Protumor and Antitumor Immunity. Current Opinion in Genetics & Development, 18, 11-18. https://doi.org/10.1016/j.gde.2007.12.007 |
[13] | Kohata, Y., Fujiwara, Y., Machida, H., Okazaki, H., Yamagami, H., Tanigawa, T., et al. (2011) Role of TH-2 Cytokines in the Development of Barrett’s Esophagus in Rats. Journal of Gastroenterology, 46, 883-893. https://doi.org/10.1007/s00535-011-0405-y |
[14] | Dabbagh, K., Takeyama, K., Lee, H., Ueki, I.F., Lausier, J.A. and Nadel, J.A. (1999) IL-4 Induces Mucin Gene Expression and Goblet Cell Metaplasia in Vitro and in Vivo. The Journal of Immunology, 162, 6233-6237. https://doi.org/10.4049/jimmunol.162.10.6233 |
[15] | Dohi, T., Fujihashi, K., Koga, T., Shirai, Y., Kawamura, Y.I., Ejima, C., et al. (2003) T Helper Type-2 Cells Induce Ileal Villus Atrophy, Goblet Cell Metaplasia, and Wasting Disease in T Cell-Deficient Mice. Gastroenterology, 124, 672-682. https://doi.org/10.1053/gast.2003.50092 |
[16] | van Sandick, J.W., Boermeester, M.A., Gisbertz, S.S., ten Berge, I.J.M., Out, T.A., van der Pouw Kraan, T.C.T.M., et al. (2003) Lymphocyte Subsets and TH1/TH2 Immune Responses in Patients with Adenocarcinoma of the Oesophagus or Oesophagogastric Junction: Relation to PTNM Stage and Clinical Outcome. Cancer Immunology, Immunotherapy, 52, 617-624. https://doi.org/10.1007/s00262-003-0406-7 |
[17] | O’Riordan, J.M., Abdel-latif, M.M., Ravi, N., McNamara, D., Byrne, P.J., McDonald, G.S.A., et al. (2005) Proinflammatory Cytokine and Nuclear Factor Kappa-B Expression along the Inflammation-Metaplasia-Dysplasia-Adenocarcinoma Sequence in the Esophagus. The American Journal of Gastroenterology, 100, 1257-1264. https://doi.org/10.1111/j.1572-0241.2005.41338.x |
[18] | Quante, M., Bhagat, G., Abrams, J.A., Marache, F., Good, P., Lee, M.D., et al. (2012) Bile Acid and Inflammation Activate Gastric Cardia Stem Cells in a Mouse Model of Barrett-Like Metaplasia. Cancer Cell, 21, 36-51. https://doi.org/10.1016/j.ccr.2011.12.004 |
[19] | Tselepis, C., Perry, I., Dawson, C., Hardy, R., Darnton, S.J., McConkey, C., et al. (2002) Tumour Necrosis Factor-α in Barrett’s Oesophagus: A Potential Novel Mechanism of Action. Oncogene, 21, 6071-6081. https://doi.org/10.1038/sj.onc.1205731 |
[20] | Dvorakova, K., Payne, C.M., Ramsey, L., Holubec, H., Sampliner, R., Dominguez, J., et al. (2004) Increased Expression and Secretion of Interleukin-6 in Patients with Barrett’s Esophagus. Clinical Cancer Research, 10, 2020-2028. https://doi.org/10.1158/1078-0432.ccr-0437-03 |
[21] | Hong, S. (2010) Connection between Inflammation and Carcinogenesis in Gastrointestinal Tract: Focus on TGF-β Signaling. World Journal of Gastroenterology, 16, 2080-2093. https://doi.org/10.3748/wjg.v16.i17.2080 |
[22] | Zhang, Y.E. (2008) Non-Smad pathways in TGF-β Signaling. Cell Research, 19, 128-139. https://doi.org/10.1038/cr.2008.328 |
[23] | Onwuegbusi, B.A. (2006) Impaired Transforming Growth Factor Signalling in Barrett’s Carcinogenesis Due to Frequent SMAD4 Inactivation. Gut, 55, 764-774. https://doi.org/10.1136/gut.2005.076430 |
[24] | Buskens, C.J., Ristimäki, A., Offerhaus, G.J.A., Richel, D.J. and van Lanschot, J.J.B. (2003) Role of Cyclooxygenase-2 in the Development and Treatment of Oesophageal Adenocarcinoma. Scandinavian Journal of Gastroenterology, 38, 87-93. |
[25] | Shaheen, N.J. (2005) Advances in Barrett’s Esophagus and Esophageal Adenocarcinoma. Gastroenterology, 128, 1554-1566. https://doi.org/10.1053/j.gastro.2005.03.032 |
[26] | Shirvani, V.N., Ouatu-Lascar, R., Kaur, B.S., Omary, M.B. and Triadafilopoulos, G. (2000) Cyclooxygenase 2 Expression in Barrett’s Esophagus and Adenocarcinoma: Ex Vivo Induction by Bile Salts and Acid Exposure. Gastroenterology, 118, 487-496. https://doi.org/10.1016/s0016-5085(00)70254-x |
[27] | Möbius, C., Stein, H.J., Spieß, C., Becker, I., Feith, M., Theisen, J., et al. (2005) COX2 Expression, Angiogenesis, Proliferation and Survival in Barrett’s Cancer. European Journal of Surgical Oncology, 31, 755-759. https://doi.org/10.1016/j.ejso.2005.01.006 |
[28] | Jarnicki, A., Putoczki, T. and Ernst, M. (2010) STAT3: Linking Inflammation to Epithelial Cancer—More than a “Gut” Feeling? Cell Division, 5, Article No. 14. https://doi.org/10.1186/1747-1028-5-14 |
[29] | Heinrich, P.C., Behrmann, I., Haan, S., Hermanns, H.M., Müller-Newen, G. and Schaper, F. (2003) Principles of Interleukin (Il)-6-Type Cytokine Signalling and Its Regulation. Biochemical Journal, 374, 1-20. https://doi.org/10.1042/bj20030407 |
[30] | Shuai, K., Horvath, C.M., Huang, L.H.T., Qureshi, S.A., Cowburn, D. and Darnell, J.E. (1994) Interferon Activation of the Transcription Factor STAT91 Involves Dimerization through SH2-Phosphotyrosyl Peptide Interactions. Cell, 76, 821-828. https://doi.org/10.1016/0092-8674(94)90357-3 |
[31] | Kawashima, T., Bao, Y.C., Minoshima, Y., Nomura, Y., Hatori, T., Hori, T., et al. (2009) A Rac GTPase-Activating Protein, Mgcracgap, Is a Nuclear Localizing Signal-Containing Nuclear Chaperone in the Activation of STAT Transcription Factors. Molecular and Cellular Biology, 29, 1796-1813. https://doi.org/10.1128/mcb.01423-08 |
[32] | Zhang, H.Y., Zhang, Q., Zhang, X., Yu, C., Huo, X., Cheng, E., et al. (2011) Cancer-Related Inflammation and Barrett’s Carcinogenesis: Interleukin-6 and STAT3 Mediate Apoptotic Resistance in Transformed Barrett’s Cells. American Journal of Physiology-Gastrointestinal and Liver Physiology, 300, G454-G460. https://doi.org/10.1152/ajpgi.00458.2010 |
[33] | Dvorak, K., Chavarria, M., Payne, C.M., Ramsey, L., Crowley-Weber, C., Dvorakova, B., et al. (2007) Activation of the Interleukin-6/STAT3 Antiapoptotic Pathway in Esophageal Cells by Bile Acids and Low Ph: Relevance to Barrett’s Esophagus. Clinical Cancer Research, 13, 5305-5313. https://doi.org/10.1158/1078-0432.ccr-07-0483 |
[34] | Jenkins, G.J.S., Mikhail, J., Alhamdani, A., Brown, T.H., Caplin, S., Manson, J.M., et al. (2007) Immunohistochemical Study of Nuclear Factor-κB Activity and Interleukin-8 Abundance in Oesophageal Adenocarcinoma; A Useful Strategy for Monitoring These Biomarkers. Journal of Clinical Pathology, 60, 1232-1237. https://doi.org/10.1136/jcp.2006.043976 |
[35] | Jenkins, G.J.S. (2003) The Bile Acid Deoxycholic Acid (DCA) at Neutral Ph Activates NF-B and Induces IL-8 Expression in Oesophageal Cells in Vitro. Carcinogenesis, 25, 317-323. https://doi.org/10.1093/carcin/bgh032 |
[36] | Watanabe, S., Yamada, Y. and Murakami, H. (2019) Expression of TH1/TH2 Cell-Related Chemokine Receptors on CD4+ Lymphocytes under Physiological Conditions. International Journal of Laboratory Hematology, 42, 68-76. https://doi.org/10.1111/ijlh.13141 |
[37] | Li, H., Zhen, H., Han, L., Yan, B., Yu, J., Zhu, S., et al. (2015) Association between the Genetic Variations within TBX21 Gene Promoter and the Clinicopathological Characteristics of Esophageal Squamous Cell Carcinoma in a High-Risk Chinese Population. Tumor Biology, 36, 3985-3993. https://doi.org/10.1007/s13277-015-3042-x |
[38] | Kamat, P., Wen, S., Morris, J. and Anandasabapathy, S. (2009) Exploring the Association between Elevated Body Mass Index and Barrett’s Esophagus: A Systematic Review and Meta-Analysis. The Annals of Thoracic Surgery, 87, 655-662. https://doi.org/10.1016/j.athoracsur.2008.08.003 |