全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于计算流体力学的主动脉夹层血流模拟研究
Study on Blood Flow Simulation of Aortic Dissection Based on Computational Fluid Dynamics

DOI: 10.12677/ijfd.2025.131008, PP. 84-91

Keywords: 主动脉夹层,计算流体力学,血流动力学,数值模拟
Aortic Dissection
, Computational Fluid Dynamics, Hemodynamic, Numerical Simulation

Full-Text   Cite this paper   Add to My Lib

Abstract:

主动脉夹层(AD)是一种死亡率很高的致命性心血管疾病。目前,计算机断层扫描(CT)成像是诊断和评估主动脉疾病的主要方式,提供血管结构的详细可视化。然而,CT成像在评估主动脉内血流动力学变化方面存在局限性。最近,计算流体动力学(CFD)作为一种先进的无创技术出现,可以实现血管内血流动力学状况的可视化。这项技术为临床医生提供了对主动脉疾病更全面的了解,有助于改进诊断、治疗计划和预后评估。本研究中,先模拟了一例直管的血流,将出口压力与解析解比较,结果吻合良好,验证了数值模拟的准确性。然后,模拟了一例AD的血流,并定量和定性分析收缩期和舒张期AD的压力和壁剪切应力(WSS)。结果表明,AD真腔和假腔的压差可促进主动脉壁内膜破裂,形成夹层,过低的壁面剪切力可增强血流对主动脉壁的撕裂作用,促进夹层的形成,这为今后AD的研究和临床实践提供参考。
Aortic dissection (AD) is a fatal cardiovascular disease with a high mortality rate. Currently, computed tomography (CT) imaging is the primary modality for diagnosing and evaluating aortic diseases, providing detailed visualization of vascular structures. However, CT imaging has limitations in assessing the hemodynamic changes within the aorta. Recently, computational fluid dynamics (CFD) has emerged as an advanced noninvasive technique that enables the visualization of hemodynamic conditions within blood vessels. This technology provides clinicians with a more comprehensive understanding of aortic disease, facilitating improved diagnosis, treatment planning, and prognosis assessment. In this study, the blood flow of a straight tube was simulated first, and the outlet pressure was compared with the analytical solution. The results were in well agreement, which verified the accuracy of the numerical simulation. Then, we simulated the blood flow of an AD and analyzed the pressure and wall shear stress (WSS) during systolic and diastolic. The results suggest that the pressure difference between the true and false cavities may trigger intimal rupture and dissection formation, and low WSS may increase aortic wall tearing and promote dissection, which provides valuable insights for future research and clinical practice of AD.

References

[1]  Kim, J.B., Spotnitz, M., Lindsay, M.E., et al. (2016) Risk of Aortic Dissection in the Moderately Dilated Ascending Aorta. Journal of the American College of Cardiology, 68, 1209-1219.
https://doi.org/10.1016/j.jacc.2016.06.025

[2]  Haran, C., Ghafouri, K., Xu, W., Hayes, I., Stiles, M. and Khashram, M. (2023) Prevalence of Genetically Triggered Aortopathy in Acute Aortic Syndrome in Aotearoa New Zealand. European Journal of Vascular and Endovascular Surgery, 66, 879-880.
https://doi.org/10.1016/j.ejvs.2023.09.013

[3]  阿依提拉·艾则孜, 刘潇遥, 张丹, 马翔. MicroRNA在主动脉夹层发病机制中研究进展[J]. 临床医学进展, 2023, 13(3): 4077-4081.
https://doi.org/10.12677/ACM.2023.133585

[4]  Lio, A., Bovio, E., Nicolò, F., Saitto, G., Scafuri, A., Bassano, C., et al. (2019) Influence of Body Mass Index on Outcomes of Patients Undergoing Surgery for Acute Aortic Dissection: A Propensity-Matched Analysis. Texas Heart Institute Journal, 46, 7-13.
https://doi.org/10.14503/thij-17-6365

[5]  Gramigna, V., Palumbo, A., Rossi, M. and Fragomeni, G. (2023) A Computational Fluid Dynamics Study to Compare Two Types of Arterial Cannulae for Cardiopulmonary Bypass. Fluids, 8, Article No. 302.
https://doi.org/10.3390/fluids8110302

[6]  Al-Rawi, M., Belkacemi, D., Lim, E.T.A. and Khashram, M. (2024) Investigation of Type A Aortic Dissection Using Computational Modelling. Biomedicines, 12, Article No. 1973.
https://doi.org/10.3390/biomedicines12091973

[7]  Nordon, I.M., Hinchliffe, R.J., Loftus, I.M., Morgan, R.A. and Thompson, M.M. (2010) Management of Acute Aortic Syndrome and Chronic Aortic Dissection. CardioVascular and Interventional Radiology, 34, 890-902.
https://doi.org/10.1007/s00270-010-0028-3

[8]  Takeda, R., Sato, F., Yokoyama, H., Sasaki, K., Oshima, N., Kuroda, A., et al. (2022) Investigations into the Potential of Using Open Source CFD to Analyze the Differences in Hemodynamic Parameters for Aortic Dissections (Healthy versus Stanford Type A and B). Annals of Vascular Surgery, 79, 310-323.
https://doi.org/10.1016/j.avsg.2021.08.007

[9]  Wang, Q., Guo, X., Stäb, D., Jin, N., Poon, E.K.W., Lim, R.P., et al. (2022) Computational Fluid Dynamic Simulations Informed by CT and 4D Flow MRI for Post-Surgery Aortic Dissection—A Case Study. International Journal of Heat and Fluid Flow, 96, Article ID: 108986.
https://doi.org/10.1016/j.ijheatfluidflow.2022.108986

[10]  Qin, S., Wu, B., Liu, J., Shiu, W., Yan, Z., Chen, R., et al. (2021) Efficient Parallel Simulation of Hemodynamics in Patient-Specific Abdominal Aorta with Aneurysm. Computers in Biology and Medicine, 136, Article ID: 104652.
https://doi.org/10.1016/j.compbiomed.2021.104652

[11]  Xiao, N., Alastruey, J. and Alberto Figueroa, C. (2013) A Systematic Comparison between 1‐D and 3‐D Hemodynamics in Compliant Arterial Models. International Journal for Numerical Methods in Biomedical Engineering, 30, 204-231.
https://doi.org/10.1002/cnm.2598

[12]  Qin, S., Chen, R., Wu, B., Shiu, W. and Cai, X. (2021) Numerical Simulation of Blood Flows in Patient-Specific Abdominal Aorta with Primary Organs. Biomechanics and Modeling in Mechanobiology, 20, 909-924.
https://doi.org/10.1007/s10237-021-01419-7

[13]  Brown, A.G. (2012) Patient-Specific Local and Systemic Haemodynamics in the Presence of a Left Ventricular Assist Device. University of Sheffield.
[14]  Chi, Q., He, Y., Luan, Y., Qin, K. and Mu, L. (2017) Numerical Analysis of Wall Shear Stress in Ascending Aorta before Tearing in Type A Aortic Dissection. Computers in Biology and Medicine, 89, 236-247.
https://doi.org/10.1016/j.compbiomed.2017.07.029

[15]  Wen, J., Yan, T., Su, Z., Huang, H., Gao, Q., Chen, X., et al. (2022) Risk Evaluation of Type B Aortic Dissection Based on Wss-Based Indicators Distribution in Different Types of Aortic Arch. Computer Methods and Programs in Biomedicine, 221, Article ID: 106872.
https://doi.org/10.1016/j.cmpb.2022.106872

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133