|
UHPC后浇节点装配式RC梁–柱子结构的抗倒塌性能试验研究
|
Abstract:
本文开展了超高性能混凝土材料(UHPC)后浇节点装配式钢筋混凝土(RC)梁–柱子结构的静力Pushdown试验以研究其抗倒塌性能。梁–柱子结构试件共设计制作了4个,几何尺寸相同,配筋形式相近,主要变量为梁纵筋在节点区的直线锚固长度。全现浇试件S0的梁底部纵筋在梁柱节点区的直线锚固长度la为29 d (其中d为钢筋直径),而UHPC后浇试件PUS1、PUS2和PUS3的la分别为通长连续、20 d和10 d。试验结果表明:UHPC后浇节点试件与全现浇试件的破坏形态和裂缝发展过程相似,只是UHPC后浇试件开裂较早并集中在节点区附近;UHPC后浇试件的开裂荷载相较于整浇试件有所降低,而后浇试件的压拱机制承载力、悬链线机制承载力及其位移变形能力与全现浇试件的基本相当,甚至承载力略有提升;UHPC后浇试件减小中柱节点区梁纵筋的锚固长度,会降低试件的开裂荷载、压拱机制承载力及其位移,但是会提高悬链线机制的发展程度,增加悬链线机制承载力及其位移;当梁受拉纵筋在UHPC后浇区的锚固长度为20 d时,UHPC后浇试件的压拱机制和悬链线机制均能有较好的发挥。
In this paper, static Pushdown tests of ultra-high performance concrete material (UHPC) post-cast-joint assembled reinforced concrete (RC) beam-column sub-assemblages were carried out to investigate the collapse behavior. A total of four specimens of beam-column sub-assemblages were designed and fabricated with the same geometry and similar reinforcements, with the main variable being the linear anchorage length of the beam longitudinal rebars in the joint zone. The linear anchorage length la of beam bottom longitudinal rebars in the joint zone for monolithic specimen S0 was 29 d (where d is the rebar diameter), while that of UHPC post-cast specimens PUS1, PUS2 and PUS3 was through-length continuous, 20 d and 10 d, respectively. The test results showed that the damage pattern and crack development process of UHPC post-cast specimens and monolithic specimen were similar, except that the UHPC post-cast specimens cracked earlier and the cracks tended to localize near the joint. The cracking load of the UHPC post-cast specimens was lower than that of monolithic specimen, while the load-carrying capacity of compression arch mechanism and catenary mechanism as well as the corresponding deformation capacity of the post-cast specimens were basically comparable with that of the monolithic specimen. Reducing the anchorage length of beam longitudinal rebars in the joint of the UHPC post-cast specimen decreased the cracking load, load carrying capacity of compression arch mechanism as well as the displacement, but would improve the development degree of the catenary mechanism and increase its load-carrying capacity and displacement. When the anchorage length of the beam longitudinal rebars in the UHPC post-cast joint was 20 d, UHPC post-cast specimens could achieve comparable performance of both compression arch mechanism and catenary mechanism with the
[1] | 杨涛, 谢元康, 郝天之. 装配式混凝土框架子结构动态倒塌性能试验研究[J]. 防灾减灾工程学报, 2022, 42(1): 126-134. |
[2] | 张望喜, 王雄, 刘精巾, 等. 现浇与装配整体式混凝土空间框架子结构的抗连续倒塌性能试验对比研究[J]. 建筑结构学报, 2020, 41(7): 81-90. |
[3] | 周云, 彭涵钰, 裴熠麟, 等. 基于Pushdown方法的全装配式混凝土框架结构抗连续倒塌研究及灵敏度分析[J]. 地震工程与工程振动, 2019, 39(3): 8-22. |
[4] | 张兆昌. 高性能材料提升混凝土结构抗连续倒塌性能的研究[D]: [博士学位论文]. 南京: 东南大学, 2023. |
[5] | 刘祎霖, 李易, 赵子栋, 等. 装配整体式混凝土框架抗连续倒塌试验研究[J]. 建筑结构学报, 2022, 43(6): 117-127. |
[6] | 钱凯, 何畔, 原小兰, 等. 中柱失效下预制装配式框架结构抗连续倒塌性能研究[J]. 建筑结构学报, 2022, 43(7): 131-142. |
[7] | Kang, S. and Tan, K.H. (2017) Progressive Collapse Resistance of Precast Concrete Frames with Discontinuous Reinforcement in the Joint. Journal of Structural Engineering, 143, Article 04017090. https://doi.org/10.1061/(asce)st.1943-541x.0001828 |
[8] | Qian, K., Liang, S., Fu, F. and Li, Y. (2021) Progressive Collapse Resistance of Emulative Precast Concrete Frames with Various Reinforcing Details. Journal of Structural Engineering, 147, Article 04021107. https://doi.org/10.1061/(asce)st.1943-541x.0003065 |
[9] | Feng, F., Hwang, H. and Yi, W. (2020) Static and Dynamic Loading Tests for Precast Concrete Moment Frames under Progressive Collapse. Engineering Structures, 213, Article 110612. https://doi.org/10.1016/j.engstruct.2020.110612 |
[10] | 谭光伟, 刘中存, 黄华, 等. 钢-混凝土混合连接预制装配式梁-柱子结构抗连续倒塌性能研究[J/OL]. 建筑科学与工程学报, 1-12. http://kns.cnki.net/kcms/detail/61.1442.TU.20230914.1315.002.html, 2025-03-19. |
[11] | 王德辉, 史才军, 吴林妹. 超高性能混凝土在中国的研究和应用[J]. 硅酸盐通报. 2016, 35(1): 141-149. |
[12] | 韩方玉, 刘建忠, 刘加平, 等. 基于超高性能混凝土的钢筋锚固性能研究[J]. 材料导报. 2019, 33(1): 244-248. |
[13] | 冯军骁, 郑七振, 龙莉波, 等. 超高性能混凝土连接的预制梁受弯性能试验研究[J]. 工业建筑, 2017, 47(8): 59-65. |
[14] | 梁雪娇, 郑辉, 轩帅飞, 等. 超高性能混凝土节段预制拼接梁受弯性能试验研究[J]. 工业建筑, 2021, 51(1): 30-36, 72. |
[15] | 郑七振, 刘阳阳, 龙莉波, 等. 超高性能混凝土连接的装配式现浇混凝土框架抗震性能[J]. 工业建筑, 2019, 49(10): 85-91. |
[16] | 马跃强, 龙莉波, 郑七振. 基于UHPC的预制装配式节点新型连接与结构体系创新研究[J]. 建筑施工, 2016, 38(12): 1724-1725. |
[17] | 谢思昱, 郑七振, 龙莉波, 等. 以UHPC材料连接的装配式框架边节点抗震性能试验研究[J]. 建筑施工, 2016, 38(12): 1718-1721. |
[18] | 杨佩英. 预制装配式梁UHPC连接节点抗震性能研究[D]: [硕士学位论文]. 包头: 内蒙古科技大学, 2023. |
[19] | 林上顺, 林永捷, 夏樟华, 等. UHPC和预制榫卯混合连接装配式RC桥墩拟静力试验[J]. 桥梁建设, 2023, 53(1): 16-23. |
[20] | 郑七振, 农德才, 龙莉波, 等. 基于超高性能水泥基复合材料连接的预制装配式混凝土剪力墙抗震性能试验研究[J]. 建筑结构, 2022, 52(6): 1-9, 60. |
[21] | 陈子轩. 预制UHPC壳局部增强装配式混凝土框架节点的抗震性能研究[D]: [硕士学位论文]. 南京: 东南大学, 2020. |
[22] | 郑七振, 陈威钢, 龙莉波, 等. UHPC连接的节点预制-构件预制装配式框架抗震性能试验研究[J]. 上海理工大学学报, 2019, 41(6): 584-590. |
[23] | 张龙, 刘涛, 陈林, 等. ECC后浇节点装配式混凝土梁-柱子结构倒塌试验[J]. 自然灾害学报, 2023, 32(4): 209-219. |
[24] | Do, D. (2016) Design of Structures to Resists Progressive Collapse. Department of Defense, Washington DC. |
[25] | 周育泷, 李易, 陆新征, 等. 钢筋混凝土框架抗连续倒塌的压拱机制分析模型[J]. 工程力学, 2016, 33(4): 34-42. |
[26] | Yi, W.J., He, Q.F., Xiao, Y., et al. (2008) Experimental Study on Progressive Collapse-Resistant Behavior of Reinforced Concrete Frame Structures. ACI Structural Journal, 105, 433-439. |