|
基于生死单元法的聚醚醚酮熔融沉积成型温度场仿真及分析
|
Abstract:
聚醚醚酮(PEEK)作为高性能聚合物的一种,具有良好的塑性性能,其优良的物理性能广泛应用于航空航天领域、汽车制造业、电子信息产业、工业领域和医疗领域等。熔融沉积成型技术(FDM)为PEEK材料的主要加工方式之一,具有材料利用率高、成型效率高、制造成本低并且可以实现复杂零件成型的优势。而FDM成型PEEK过程中,由于温度场和热应力耦合场的影响,导致成型件产生变形,严重影响产品的尺寸精度和力学性能,甚至使其报废。本文基于有限元分析理论,利用生死单元法,建立FDM打印模型并进行温度场仿真,在FDM成型过程中,喷头温度对其具有一定影响,通过有限元的方法模拟仿真打印过程,分析模型不同时刻的温度场分布、不同节点的温度–时间变化曲线和温度梯度的变化趋势,得出不同喷头温度的影响规律,用以指导实际生产生活,对产品的加工有着重要的意义。
As a kind of high-performance polymer, PEEK has good plastic properties, and its excellent physical properties are widely used in aerospace field, automobile manufacturing industry, electronic information industry, industry field and medical field. Melt deposition molding technology (FDM) is one of the main processing methods of PEEK materials, which has the advantages of high material utilization rate, high molding efficiency, low manufacturing cost and can achieve complex parts molding. In the process of FDM molding PEEK, due to the influence of temperature field and thermal stress coupling field, the molding parts have deformation, which seriously affects the dimensional accuracy and mechanical properties of the product, and even makes them scrapped. Based on the finite element analysis theory, this paper uses the birth and death element method to establish an FDM printing model and conduct temperature field simulation. During the FDM forming process, the nozzle temperature has a certain influence on it. By simulating the printing process through the finite element method, the temperature field distribution at different times of the model, the temperature-time variation curves of different nodes, and the changing trend of the temperature gradient are analyzed. The influence laws of different nozzle temperatures are obtained, which can guide actual production and life and have important significance for the processing of products.
[1] | 白杉, 周洁. 聚醚醚酮树脂应用现状[J]. 化工科技市场, 2004(8): 21-23, 13. |
[2] | Haleem, A. and Javaid, M. (2019) Polyether Ether Ketone (PEEK) and Its 3D Printed Implants Applications in Medical Field: An Overview. Clinical Epidemiology and Global Health, 7, 571-577. https://doi.org/10.1016/j.cegh.2019.01.003 |
[3] | 师瑞宁, 杨诗卉, 张静洁, 王俊艳, 周哲, 周延民, 赵静辉. 不同制备工艺聚醚醚酮及其复合材料的力学性能研究进展[J]. 现代口腔医学杂志, 2021, 35(5): 338-342. |
[4] | 赵纯, 张玉龙. 聚醚醚酮[M]. 北京: 化学工业出版社, 2008: 5. |
[5] | 文周, 刘梦, 唐先军, 王永飞. 加工工艺参数对PEEK材料拉伸强度及结构稳定性的影响[J]. 塑料工业, 2021, 49(12): 76-81. |
[6] | 赵丙辉, 李沅, 李文娇. 3D打印技术制备骨科植入材料聚醚醚酮的力学性能研究及氨基改性对材料成骨性能的影响[J]. 中国医疗器械信息, 2021, 27(13): 10-12, 74. |
[7] | Berretta, S., Davies, R., Shyng, Y.T., Wang, Y. and Ghita, O. (2017) Fused Deposition Modelling of High Temperature Polymers: Exploring CNT PEEK Composites. Polymer Testing, 63, 251-262. https://doi.org/10.1016/j.polymertesting.2017.08.024 |
[8] | 王鑫宇, 曹毅, 杨来侠, 高扬, 徐超, 党苏武, 李素丽. 熔融沉积成型聚醚醚酮热处理工艺对力学性能影响[J]. 工程塑料应用, 2021, 49(2): 61-66. |
[9] | 梁宜楠. CF/PEEK点阵结构自动铺放原位成型工艺研究[D]: [硕士学位论文]. 大连: 大连理工大学, 2021. |
[10] | 刘绘龙, 刘亚雄, 孙文森, 赵广宾. 个性化聚醚醚酮植入物的制造工艺研究[J]. 西安交通大学学报, 2019, 53(12): 72-79. |
[11] | Arif, M.F., Kumar, S., Varadarajan, K.M. and Cantwell, W.J. (2018) Performance of Biocompatible PEEK Processed by Fused Deposition Additive Manufacturing. Materials & Design, 146, 249-259. https://doi.org/10.1016/j.matdes.2018.03.015 |