全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于改进Mamba的医学图像分割模型
Medical Image Segmentation Model Based on Improved Mamba

DOI: 10.12677/mos.2025.143242, PP. 515-523

Keywords: U-Net,Mamba-Out,AKConv,残差网络
U-Net
, Mamba-Out, AkConv, Residual Network

Full-Text   Cite this paper   Add to My Lib

Abstract:

在医学图像分割任务中,针对传统U型网络在膀胱肿瘤和视网膜眼底MRI图像分割中在处理复杂结构和细节上分割精度差的问题,本研究提出了一种改进的U-Net网络模型——Akmamba-Net。该模型结合AKConv和Mamba-out模块,有效提高了模型的特征提取能力。AKConv模块通过引入卷积操作与空间重采样机制,增强了网络的适用性和灵活性,尤其是在处理形状不规则的肿瘤边界时。Mamba-out模块则通过优化特征融合和增强细节信息,进一步提升了模型的分割精度。实验结果表明,Akmamba-Net网络在视网膜眼底和膀胱肿瘤MRI图像分割任务中,Precision、Dice系数、IoU指标分别达到了97.2%、82.5%、71.9%和89.64%、89.98%、81.75%,与U-Net和其他主流模型相比显著提高了分割的准确性,能够有效地提高视网膜眼底、膀胱肿瘤的分割精度,满足医学图像分割的需求。
In medical image segmentation tasks, traditional U-Net networks often exhibit poor segmentation accuracy when handling complex structures and details in bladder tumor and retinal fundus MRI images. To address this issue, this study proposes an improved U-Net network model, Akmamba-Net. The model integrates the AKConv and Mamba-out modules, significantly enhancing the model’s feature extraction capability. The AKConv module improves the network’s adaptability and flexibility by introducing convolution operations and spatial resampling mechanisms, particularly in handling irregular tumor boundaries. The Mamba-out module further enhances the segmentation accuracy by optimizing feature fusion and boosting detailed information. Experimental results show that Akmamba-Net achieves Precision, Dice coefficient, and IoU metrics of 97.2%, 82.5%, and 71.9% for retinal fundus segmentation, and 89.64%, 89.98%, and 81.75% for bladder tumor segmentation, respectively. Compared with U-Net and other mainstream models, Akmamba-Net significantly improves segmentation accuracy, effectively enhancing the segmentation precision of retinal fundus and bladder tumor regions, thus meeting the needs of medical image segmentation.

References

[1]  诗慧陈, 维湘刘, 璟秦, 等. 基于深度学习和医学图像的癌症计算机辅助诊断研究进展[J]. 生物医学工程学杂志, 2017, 34(2): 314-319.
[2]  Ronneberger, O., Fischer, P. and Brox, T. (2015) U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Navab, N., Hornegger, J., Wells, W. and Frangi, A., Eds., Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Springer, 234-241.
https://doi.org/10.1007/978-3-319-24574-4_28
[3]  曹心姿, 梁秋源, 李瑞新, 等. 基于改进的U-Net网络在 MRI 膀胱肿瘤图像的分割[J]. 计算机与数字工程, 2021, 49(7): 1442-1447.
[4]  Li, X., Wang, J., Wei, H., Cong, J., Sun, H., Wang, P., et al. (2024) MH2AFormer: An Efficient Multiscale Hierarchical Hybrid Attention with a Transformer for Bladder Wall and Tumor Segmentation. IEEE Journal of Biomedical and Health Informatics, 28, 4772-4784.
https://doi.org/10.1109/jbhi.2024.3397698
[5]  Wang, Z., Zheng, J.Q., Zhang, Y., et al. (2024) Mamba-UNet: UNet-Like Pure Visual Mamba for Medical Image Segmentation. arXiv: 2402.05079.
[6]  Deari, S., Oksuz, I. and Ulukaya, S. (2023) Block Attention and Switchable Normalization Based Deep Learning Framework for Segmentation of Retinal Vessels. IEEE Access, 11, 38263-38274.
https://doi.org/10.1109/access.2023.3265729
[7]  胡鸿翔, 丁学明, 丁雪峰, 等. 基于全分辨率卷积交互网络的视网膜血管分割[J/OL]. 控制工程, 1-10.
https://kns.cnki.net/kcms2/article/abstract?v=cO3sNaablhhcqwEyCREI-3H4FJwn2ZHkyjyHEHXPrtm9hCpIM1QFEopRixMXlSJBErfqJL2nZfXQKC2n6Buw9QQ-TP-3-Vn3SxV3QlSSY4rOEmSgRSYnf6LAaXbci_echdu43budi09ESr5qm_cdieycwlnksl4cyROQgkfctZNfJufgvl81EPR3j0BguDxA&uniplatform=NZKPT&language=CHS, 2025-03-21.
[8]  Zhang, X., Song, Y., Song, T., et al. (2023) AKConv: Convolutional Kernel with Arbitrary Sampled Shapes and Arbitrary Number of Parameters. arXiv: 2311.11587.
[9]  Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N. and Liang, J. (2018) UNet++: A Nested U-Net Architecture for Medical Image Segmentation. In: Stoyanov, D., et al., Eds., Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, Springer, 3-11.
https://doi.org/10.1007/978-3-030-00889-5_1
[10]  Oktay, O., Schlemper, J., Folgoc, L.L., et al. (2018) Attention U-Net: Learning Where to Look for the Pancreas. arXiv: 1804.03999.
[11]  Huang, H., Lin, L., Tong, R., Hu, H., Zhang, Q., Iwamoto, Y., et al. (2020) UNet 3+: A Full-Scale Connected UNet for Medical Image Segmentation. ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, 4-8 May 2020, 1055-1059.
https://doi.org/10.1109/icassp40776.2020.9053405
[12]  Chen, J., Lu, Y., Yn, Q., et al. (2021) TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation. arXiv: 2102.04306.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133