|
便携式PCR实时光电检测系统设计
|
Abstract:
针对传统荧光聚合酶链式反应(Polymerase Chain Reaction, PCR)检测仪操作复杂、体积大、成本高的问题,设计了一款便携式实时荧光检测设备。该设备集光机电一体化,集成度高。光学系统基于Zemax光学设计软件优化,光能利用率可达90%以上。硬件电路以CH32V305FPB6芯片为主控,光源功率输出稳定,外围信号处理电路精度和采样信噪比高。结合Solidworks软件进行机械设计,将光学与电路系统集成,体积仅4.1 cm × 3 cm × 2 cm,可单独使用或集成于其他设备。经乙型肝炎病毒(HBV)样品测试,可快速准确判断阳性,经过高中低浓度样品检测测试10次变异系数CV值分别为0.01%、0.07%、0.62%,均小于国家标准的2%,线性实验相关系数为0.998,检测重复性和线性度好,具有良好应用前景。
Aiming to address the issues of complex operation, large size, and high cost associated with traditional fluorescence Polymerase Chain Reaction (PCR) detection instruments, we have developed a portable real-time fluorescence detection device. This device integrates optics, mechanics, and electronics, achieving a high level of integration. The optical system is optimized using Zemax software, resulting in an optical efficiency exceeding 90%. The hardware circuit employs the CH32V305FPB6 chip as the main controller, ensuring stable light source power output and high precision in peripheral signal processing circuits with excellent signal-to-noise ratios. Mechanical design is conducted using SolidWorks software, integrating the optical and circuit systems into a compact unit measuring only 4.1 cm × 3 cm × 2 cm, which can function independently or be integrated into other devices. Testing with hepatitis B virus (HBV) samples demonstrates rapid and accurate positive detection. When testing samples at high, medium, and low concentrations, the coefficients of variation (CV) for ten repeated tests are 0.01%, 0.07%, and 0.62%, respectively, all below the national standard of 2%, and the linear experiment correlation coefficient was 0.998, indicating excellent detection repeatability and linearity. This device holds promising application prospects.
[1] | Ackerman, C.M., Myhrvold, C., Thakku, S.G., Freije, C.A., Metsky, H.C., Yang, D.K., et al. (2020) Massively Multiplexed Nucleic Acid Detection with Cas13. Nature, 582, 277-282. https://doi.org/10.1038/s41586-020-2279-8 |
[2] | 付强. 用于核酸快速检测的微流控装置研究与实现[D]: [博士学位论文]. 北京: 北京化工大学, 2023. |
[3] | 尹居鑫, 夏丽萍, 邹哲宇, 等. 多重数字聚合酶链式反应技术及其应用[J]. 分析化学, 2022, 50(1): 25-38. |
[4] | 戴皓正. 面向核酸现场检测仪器的荧光检测系统研制[D]: [硕士学位论文]. 厦门: 厦门大学, 2021. |
[5] | 欧维正, 秦万, 王琼, 等. 恒温扩增实时荧光检测快速诊断结核性脑膜炎的临床价值[J]. 检验医学, 2020, 35(11): 1169-1172. |
[6] | 林港沅, 杨秀娟, 陈缵光. 微流控芯片荧光检测系统的研究进展[J]. 理化检验-化学分析, 2023, 59(6): 859-867. |
[7] | 谢欣茹, 杨波, 潘帅, 等. 多通道PCR荧光检测仪的光学系统设计[J]. 光学技术, 2019, 45(5): 531-534. |
[8] | 杨佳羽, 曾俊添, 奚邦朝, 等. 面向核酸现场快速检测的多重实时荧光检测系统[J]. 应用光学, 2023, 44(4): 859-867. |
[9] | 杨李彬. 基于不同微流控体系的实时PCR装置光电检测系统研究[D]: [硕士学位论文]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2021. |
[10] | 谢璐, 吴义才, 刘家宇, 等. 用于核酸检测的现场即时检测装置设计[J]. 生物医学工程, 2022, 41(2): 1672-6278. |
[11] | Koo, S., Kim, Y., Park, C. and Lee, D. (2022) Compact Camera Fluorescence Detector for Parallel-Light Lens-Based Real-Time PCR System. Sensors, 22, Article No. 8575. https://doi.org/10.3390/s22218575 |
[12] | 郭佳. 便携式非洲猪瘟病毒快速检测系统研究[D]: [硕士学位论文]. 济南: 山东师范大学, 2023. |
[13] | 张帅, 胡志刚, 杜喆, 等. 基于嵌入式ARM的微流控PCR检测系统设计[J]. 传感器与微系统, 2024, 43(1): 76-79. |
[14] | 杨海涛, 刘桂礼, 孔全存, 等. 基于微流控芯片荧光成像检测仪研制[J]. 传感器与微系统, 2020, 39(9): 77-79. |
[15] | 王丰琳, 周新颖, 王文晶, 等. 基于光源切换的发光二极管诱导荧光检测器的研制与评价[J]. 分析测试系统, 2021, 40(10): 1460-1466. |