|
金纳米形状优化光敏剂表面增强拉曼信号
|
Abstract:
磺化铝酞菁(AlPcs)是一种具有优异光敏性的光敏剂,广泛应用于癌症的检测与治疗。然而,铝酞菁在临床检测中仍面临重要挑战,主要体现在其需要特定波长的激发光源和一定的浓度范围。为解决这一问题,本研究通过引入金纳米粒子,利用金纳米等离子体效应增强拉曼信号,从而实现低浓度下的快速、灵敏检测。表面增强拉曼散射(SERS)技术是通过在金属表面产生的局部电磁场显著增强拉曼散射信号,极大地提升了检测灵敏度。然而,尚未明确哪种金纳米材料对铝酞菁的拉曼信号增强效果最佳,且增强效果的具体数值也未被充分研究。在本研究中,我们采用有限时域差分(FDTD)方法对四种不同形态的金纳米结构进行了模拟,系统评估了铝酞菁与这些金纳米粒子复合后的拉曼信号增强效果。结果表明,尽管所有金纳米结构均可增强铝酞菁的拉曼信号,金纳米六边形与铝酞菁复合物(GNPL@AlPcs)在SERS性能中展现出最高的增强效率。实验数据与模拟结果高度一致,为药物检测领域中合适金纳米材料的选择提供了有力指导。
Aluminum sulfonated phthalocyanine (AlPcs) is a kind of photosensitizer with excellent photosensitivity, which is widely used in the detection and treatment of cancer. However, aluminum phthalocyanine still faces important challenges in clinical detection, mainly reflected in its need for a specific wavelength excitation light source and a certain concentration range. In order to solve this problem, this study introduces gold nanoparticles and uses plasma effect to enhance Raman signal, so as to achieve fast and sensitive detection at low concentration. Surface-enhanced Raman scattering (SERS) technology significantly enhances the Raman scattering signal through the local electromagnetic field generated on the metal surface, which greatly improves the detection sensitivity. However, it is not clear which gold nanomaterials have the best enhancement effect on the Raman signal of aluminum phthalocyanine, and the specific value of the enhancement effect has not been fully studied. In this study, we used the finite difference time domain (FDTD) method to simulate four different forms of gold nanostructures, and systematically evaluated the Raman signal enhancement effect of aluminum phthalocyanine composite with these gold nanoparticles. The results showed that although all gold nanostructures could enhance the Raman signal of aluminum phthalocyanine, the gold hexagonal nanosheets and aluminum phthalocyanine complex (GNPL@AlPcs) exhibited the highest enhancement efficiency in SERS. The experimental data are highly consistent with the simulation results, which provides a strong guide for the selection of suitable gold nanomaterials in the field of drug detection.
[1] | Kavelin, V., Fesenko, O., Dubyna, H., Vidal, C., Klar, T.A., Hrelescu, C., et al. (2017) Raman and Luminescent Spectra of Sulfonated Zn Phthalocyanine Enhanced by Gold Nanoparticles. Nanoscale Research Letters, 12, Article No. 197. https://doi.org/10.1186/s11671-017-1972-5 |
[2] | Xu, Y., Hwang, S., Kim, S. and Chen, J. (2014) Two Orders of Magnitude Fluorescence Enhancement of Aluminum Phthalocyanines by Gold Nanocubes: A Remarkable Improvement for Cancer Cell Imaging and Detection. ACS Applied Materials & Interfaces, 6, 5619-5628. https://doi.org/10.1021/am500106c |
[3] | Dunn, W.B., Broadhurst, D.I., Atherton, H.J., Goodacre, R. and Griffin, J.L. (2011) Systems Level Studies of Mammalian Metabolomes: The Roles of Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy. Chemical Society Reviews, 40, 387-426. https://doi.org/10.1039/b906712b |
[4] | Aebersold, R. and Mann, M. (2016) Mass-spectrometric Exploration of Proteome Structure and Function. Nature, 537, 347-355. https://doi.org/10.1038/nature19949 |
[5] | Grimm, J.B., English, B.P., Chen, J., Slaughter, J.P., Zhang, Z., Revyakin, A., et al. (2015) A General Method to Improve Fluorophores for Live-Cell and Single-Molecule Microscopy. Nature Methods, 12, 244-250. https://doi.org/10.1038/nmeth.3256 |
[6] | Yang, Q. (2018) Broadband High-Spectral-Resolution Ultraviolet-Visible Coherent-Dispersion Imaging Spectrometer. Optics Express, 26, Article ID: 20777. https://doi.org/10.1364/oe.26.020777 |
[7] | Zhang, L., Wang, B., Yin, G., Wang, J., He, M., Yang, Y., et al. (2022) Rapid Fluorescence Sensor Guided Detection of Urinary Tract Bacterial Infections. International Journal of Nanomedicine, 17, 3723-3733. https://doi.org/10.2147/ijn.s377575 |
[8] | Bhatia, S.N., Chen, X., Dobrovolskaia, M.A. and Lammers, T. (2022) Cancer Nanomedicine. Nature Reviews Cancer, 22, 550-556. https://doi.org/10.1038/s41568-022-00496-9 |
[9] | Zhang, X., Centurion, F., Misra, A., Patel, S. and Gu, Z. (2023) Molecularly Targeted Nanomedicine Enabled by Inorganic Nanoparticles for Atherosclerosis Diagnosis and Treatment. Advanced Drug Delivery Reviews, 194, Article ID: 114709. https://doi.org/10.1016/j.addr.2023.114709 |
[10] | Liu, N., Chen, X., Kimm, M.A., Stechele, M., Chen, X., Zhang, Z., et al. (2021) In Vivo Optical Molecular Imaging of Inflammation and Immunity. Journal of Molecular Medicine, 99, 1385-1398. https://doi.org/10.1007/s00109-021-02115-w |
[11] | Lin, S., Suresch, D.L., Connolly, B., Mesfin, G., Gonzalez, R.J., Patel, M.R., et al. (2015) Optical Imaging Biomarkers of Drug-Induced Vascular Injury. Molecular Imaging, 14, 1-10. https://doi.org/10.2310/7290.2014.00054 |
[12] | Yao, T., Cao, R., Xiao, W., Pan, F. and Li, X. (2019) An Optical Study of Drug Resistance Detection in Endometrial Cancer Cells by Dynamic and Quantitative Phase Imaging. Journal of Biophotonics, 12, e201800443. https://doi.org/10.1002/jbio.201800443 |
[13] | Golubewa, L., Klimovich, A., Timoshchenko, I., Padrez, Y., Fetisova, M., Rehman, H., et al. (2023) Stable and Reusable Lace-Like Black Silicon Nanostructures Coated with Nanometer-Thick Gold Films for Sers-Based Sensing. ACS Applied Nano Materials, 6, 4770-4781. https://doi.org/10.1021/acsanm.3c00281 |
[14] | Hermida-Ramon, J.M., Guerrini, L. and Alvarez-Puebla, R.A. (2013) Analysis of the SERS Spectrum by Theoretical Methodology: Evaluating a Classical Dipole Model and the Detuning of the Excitation Frequency. The Journal of Physical Chemistry A, 117, 4584-4590. https://doi.org/10.1021/jp402926w |
[15] | Kaja, S. and Nag, A. (2021) Bimetallic Ag–cu Alloy Microflowers as SERS Substrates with Single-Molecule Detection Limit. Langmuir, 37, 13027-13037. https://doi.org/10.1021/acs.langmuir.1c02119 |
[16] | de Almeida, M.P., Rodrigues, C., Novais, Â., Grosso, F., Leopold, N., Peixe, L., et al. (2023) Silver Nanostar-Based SERS for the Discrimination of Clinically Relevant Acinetobacter Baumannii and Klebsiella Pneumoniae Species and Clones. Biosensors, 13, Article 149. https://doi.org/10.3390/bios13020149 |
[17] | Ming, T., Zhao, L., Yang, Z., Chen, H., Sun, L., Wang, J., et al. (2009) Strong Polarization Dependence of Plasmon-Enhanced Fluorescence on Single Gold Nanorods. Nano Letters, 9, 3896-3903. https://doi.org/10.1021/nl902095q |
[18] | Verde, A., Mangini, M., Managò, S., Tramontano, C., Rea, I., Boraschi, D., et al. (2021) SERS Sensing of Bacterial Endotoxin on Gold Nanoparticles. Frontiers in Immunology, 12, Article 758410. https://doi.org/10.3389/fimmu.2021.758410 |
[19] | Yuan, K., Jurado-Sánchez, B. and Escarpa, A. (2022) Nanomaterials Meet Surface-Enhanced Raman Scattering towards Enhanced Clinical Diagnosis: A Review. Journal of Nanobiotechnology, 20, Article No. 537. https://doi.org/10.1186/s12951-022-01711-3 |
[20] | Zhao, J., Pinchuk, A.O., McMahon, J.M., Li, S., Ausman, L.K., Atkinson, A.L., et al. (2008) Methods for Describing the Electromagnetic Properties of Silver and Gold Nanoparticles. Accounts of Chemical Research, 41, 1710-1720. https://doi.org/10.1021/ar800028j |
[21] | Zyubin, A.Y., Kon, I.I., Poltorabatko, D.A. and Samusev, I.G. (2023) FDTD Simulations for Rhodium and Platinum Nanoparticles for UV Plasmonics. Nanomaterials, 13, Article 897. https://doi.org/10.3390/nano13050897 |
[22] | Serebrennikova, K.V., Berlina, A.N., Sotnikov, D.V., Zherdev, A.V. and Dzantiev, B.B. (2021) Raman Scattering-Based Biosensing: New Prospects and Opportunities. Biosensors, 11, Article 512. https://doi.org/10.3390/bios11120512 |