|
荧光微球的制备及其应用
|
Abstract:
荧光微球具有高度靶向结合、可视化以及多种物质同时检测的优点,具有广泛的应用前景。基于荧光微球的即时检测(POCT)技术在检测领域具有巨大的潜力,在医学、生物、环境、化学等领域展现出巨大的潜力。本文主要综述荧光微球的制备以及在各个领域的应用进展。
Fluorescent microspheres have the advantages of highly targeted binding, visualization, and simultaneous detection of multiple substances, and have broad application prospects. The real-time detection (POCT) technology based on fluorescent microspheres has great potential in the field of detection, and has been demonstrated in medicine, biology, environment, and chemistry. This paper comprehensively reviews the preparation methods of fluorescent microspheres and their advancements in interdisciplinary applications.
[1] | 姚南南, 刘芳, 高会群, 等. 基于荧光微球的多菌灵残留快速检测试纸条的研制[J]. 食品科技, 2024, 49(1): 344-350. |
[2] | 于淼, 邹明强, 何昭阳. 高分子荧光微球在生物医学领域中的某些应用[J]. 分析测试学报, 2006, 25(3): 115-119. |
[3] | Zhang, J., Shikha, S., Mei, Q., Liu, J. and Zhang, Y. (2019) Fluorescent Microbeads for Point-of-Care Testing: A Review. Microchimica Acta, 186, 361-364. https://doi.org/10.1007/s00604-019-3449-y |
[4] | 孙响. 基于微流环境的新型光纤荧光传感检测技术研究[D]: [硕士学位论文]. 长春: 长春理工大学, 2024. |
[5] | Bradley, M., Bruno, N. and Vincent, B. (2005) Distribution of CdSe Quantum Dots within Swollen Polystyrene Microgel Particles Using Confocal Microscopy. Langmuir, 21, 2750-2753. https://doi.org/10.1021/la047322r |
[6] | Kuang, M., Wang, D., Bao, H., Gao, M., Möhwald, H. and Jiang, M. (2005) Fabrication of Multicolor‐Encoded Microspheres by Tagging Semiconductor Nanocrystals to Hydrogel Spheres. Advanced Materials, 17, 267-270. https://doi.org/10.1002/adma.200400818 |
[7] | Behnke, T., Würth, C., Hoffmann, K., Hübner, M., Panne, U. and Resch-Genger, U. (2010) Encapsulation of Hydrophobic Dyes in Polystyrene Micro-and Nanoparticles via Swelling Procedures. Journal of Fluorescence, 21, 937-944. https://doi.org/10.1007/s10895-010-0632-2 |
[8] | Wei, Y., Deng, X., Xie, Z., Cai, X., Liang, S., Ma, P., et al. (2017) Enhancing the Stability of Perovskite Quantum Dots by Encapsulation in Crosslinked Polystyrene Beads via a Swelling-Shrinking Strategy toward Superior Water Resistance. Advanced Functional Materials, 27, Article ID: 1703535. https://doi.org/10.1002/adfm.201703535 |
[9] | He, Q., Guan, T., He, Y., Lu, B., Li, D., Chen, X., et al. (2018) Digital Encoding Based Molecular Imprinting Suspension Array for Multiplexed Label-Free Sensing of Phenol Derivatives. Sensors and Actuators B: Chemical, 271, 367-373. https://doi.org/10.1016/j.snb.2018.05.101 |
[10] | Zhang, L., Zhu, L., Larson, S.R., Zhao, Y. and Wang, X. (2018) Layer-by-Layer Assembly of Nanorods on a Microsphere via Electrostatic Interactions. Soft Matter, 14, 4541-4550. https://doi.org/10.1039/c8sm00062j |
[11] | Radtchenko, I.L., Sukhorukov, G.B., Gaponik, N., Kornowski, A., Rogach, A.L. and Möhwald, H. (2001) Core-Shell Structures Formed by the Solvent-Controlled Precipitation of Luminescent CdTe Nanocrystals on Latex Spheres. Advanced Materials, 13, 1684-1687. https://doi.org/10.1002/1521-4095(200111)13:22<1684::aid-adma1684>3.0.co;2-z |
[12] | Rauf, S., Glidle, A. and Cooper, J.M. (2009) Production of Quantum Dot Barcodes Using Biological Self‐Assembly. Advanced Materials, 21, 4020-4024. https://doi.org/10.1002/adma.200900223 |
[13] | Qu, X., Jin, H., Liu, Y. and Sun, Q. (2018) Strand Displacement Amplification Reaction on Quantum Dot-Encoded Silica Bead for Visual Detection of Multiplex MicroRNAs. Analytical Chemistry, 90, 3482-3489. https://doi.org/10.1021/acs.analchem.7b05235 |
[14] | Wilson, R., Spiller, D.G., Prior, I.A., Veltkamp, K.J. and Hutchinson, A. (2007) A Simple Method for Preparing Spectrally Encoded Magnetic Beads for Multiplexed Detection. ACS Nano, 1, 487-493. https://doi.org/10.1021/nn700289m |
[15] | Causa, F., Aliberti, A., Cusano, A.M., Battista, E. and Netti, P.A. (2015) Supramolecular Spectrally Encoded Microgels with Double Strand Probes for Absolute and Direct miRNA Fluorescence Detection at High Sensitivity. Journal of the American Chemical Society, 137, 1758-1761. https://doi.org/10.1021/ja511644b |
[16] | Zhang, Q., Wang, X. and Zhu, Y. (2011) Multicolor Upconverted Luminescence-Encoded Superparticles via Controlling Self-Assembly Based on Hydrophobic Lanthanide-Doped NaYF4 Nanocrystals. Journal of Materials Chemistry, 21, 12132. https://doi.org/10.1039/c1jm10350d |
[17] | Magiati, M., Sevastou, A. and Kalogianni, D.P. (2018) A Fluorometric Lateral Flow Assay for Visual Detection of Nucleic Acids Using a Digital Camera Readout. Microchimica Acta, 185, 314-319. https://doi.org/10.1007/s00604-018-2856-9 |
[18] | Shakurov, R.I., Shansky, Y.D., Prusakov, K.A., Sizova, S.V., Dudik, S.P., Plotnikova, L.V., et al. (2023) A Fluorescent Microspheres-Based Microfluidic Test System for the Detection of Immunoglobulin G to SARS-CoV-2. Journal of Clinical Practice, 14, 44-53. https://doi.org/10.17816/clinpract278280 |
[19] | Wei, Z., Gong, B., Li, X., Chen, C. and Zhao, Q. (2024) Event-Free Survival in Neuroblastoma with MYCN Amplification and Deletion of 1p or 11q May Be Associated with Altered Immune Status. BMC Cancer, 24, Article No. 1279. https://doi.org/10.1186/s12885-024-13044-5 |
[20] | Noviendri, D., Jaswir, I. and Mohammad, T.F. (2024) Analysis of Apoptosis-Inducing Effect of Free Fucoxanthin and Fucoxan-Thin-Loaded PLGA Microsphere on Human Lung Cancer H1299 Cell Lines. International Journal of Agriculture and Biology, 31, 174-182. |
[21] | Liu, Y., Liu, L., He, Y., He, Q. and Ma, H. (2016) Quantum-Dots-Encoded-Microbeads Based Molecularly Imprinted Polymer. Biosensors and Bioelectronics, 77, 886-893. https://doi.org/10.1016/j.bios.2015.10.024 |
[22] | Shikha, S., Zheng, X. and Zhang, Y. (2017) Upconversion Nanoparticles-Encoded Hydrogel Microbeads-Based Multiplexed Protein Detection. Nano-Micro Letters, 10, Article No. 31. https://doi.org/10.1007/s40820-017-0184-y |
[23] | Bamrungsap, S., Apiwat, C., Chantima, W., Dharakul, T. and Wiriyachaiporn, N. (2013) Rapid and Sensitive Lateral Flow Immunoassay for Influenza Antigen Using Fluorescently-Doped Silica Nanoparticles. Microchimica Acta, 181, 223-230. https://doi.org/10.1007/s00604-013-1106-4 |
[24] | Li, Y.B. and Li, X.Y. (2024) Advances in Clinical Application of Cerebrospinal Fluid Circulating Tumor DNA in Leptomeningeal Metastasis of Non-Small Cell Lung Cancer. Chinese Journal of Lung Cancer, 27, 376-382. |
[25] | Zou, J., Chen, Q., He, Y., Pan, Y., Zhao, H., Shi, J., et al. (2024) Systematic Optimization and Evaluation of Culture Conditions for the Construction of Circulating Tumor Cell Clusters Using Breast Cancer Cell Lines. BMC Cancer, 24, Article No. 507. https://doi.org/10.1186/s12885-024-12214-9 |
[26] | Lv, S., Wang, J., Xie, M., Lu, N., Li, Z., Yan, X., et al. (2015) Photoresponsive Immunomagnetic Nanocarrier for Capture and Release of Rare Circulating Tumor Cells. Chemical Science, 6, 6432-6438. https://doi.org/10.1039/c5sc01380a |
[27] | 郭亮. 磁性荧光微球制备及其在荧光免疫层析检测中的应用[D]: [博士学位论文]. 南昌: 南昌大学, 2019. |
[28] | Rao, L., Meng, Q., Huang, Q., Wang, Z., Yu, G., Li, A., et al. (2018) Platelet-Leukocyte Hybrid Membrane‐Coated Immunomagnetic Beads for Highly Efficient and Highly Specific Isolation of Circulating Tumor Cells. Advanced Functional Materials, 28, Article ID: 1803531. https://doi.org/10.1002/adfm.201803531 |
[29] | Min, H., Jo, S. and Kim, H. (2015) Efficient Capture and Simple Quantification of Circulating Tumor Cells Using Quantum Dots and Magnetic Beads. Small, 11, 2536-2542. https://doi.org/10.1002/smll.201403126 |
[30] | 李俊伟, 凌保东. 细菌群体感应信号分子及其检测方法[J]. 中国感染控制杂志, 2024, 23(7): 901-909. |
[31] | Veli, M. and Ozcan, A. (2018) Computational Sensing of Staphylococcus aureus on Contact Lenses Using 3D Imaging of Curved Surfaces and Machine Learning. ACS Nano, 12, 2554-2559. https://doi.org/10.1021/acsnano.7b08375 |
[32] | Wang, J., Chi, S., Yang, T. and Chuang, H. (2018) Label-Free Monitoring of Microorganisms and Their Responses to Antibiotics Based on Self-Powered Microbead Sensors. ACS Sensors, 3, 2182-2190. https://doi.org/10.1021/acssensors.8b00790 |
[33] | Li, P., Müller, M., Chang, M.W., Frettlöh, M. and Schönherr, H. (2017) Encapsulation of Autoinducer Sensing Reporter Bacteria in Reinforced Alginate-Based Microbeads. ACS Applied Materials & Interfaces, 9, 22321-22331. https://doi.org/10.1021/acsami.7b07166 |
[34] | Mehmood, S., Yu, H., Wang, L., Hu, J., Uddin, M.A., Amin, B.U., et al. (2022) Studies on the Synthesis and Drug Release Behavior of Cross-Linked Poly(cyclotriphosphazene-co-fluorescein) Microspheres. Journal of Polymers and the Environment, 30, 5119-5129. https://doi.org/10.1007/s10924-022-02472-8 |
[35] | Wei, Z., Yang, X., Xu, L., Si, S., Wu, D. and Zeng, H. (2023) Optical Glass Microsphere Enabled Rapid Single‐Molecular Fluoroimmunoassay. Advanced Optical Materials, 11, Article ID: 2203074. https://doi.org/10.1002/adom.202203074 |
[36] | Wang, Y., Chen, Q., Wang, Y., Tu, F., Chen, X., Li, J., et al. (2023) A Time-Resolved Fluorescent Microsphere-Lateral Flow Immunoassay Strip Assay with Image Visual Analysis for Quantitative Detection of Helicobacter pylori in Saliva. Talanta, 256, Article ID: 124317. https://doi.org/10.1016/j.talanta.2023.124317 |
[37] | Zhang, H., Luo, J., Beloglazova, N., Yang, S., De Saeger, S., Mari, G.M., et al. (2019) Portable Multiplex Immunochromatographic Assay for Quantitation of Two Typical Algae Toxins Based on Dual-Color Fluorescence Microspheres. Journal of Agricultural and Food Chemistry, 67, 6041-6047. https://doi.org/10.1021/acs.jafc.9b00011 |
[38] | Li, L. and Xu, L. (2020) Highly Fluorescent Silicon Quantum Dots Decorated Silica Microspheres for Selective Detection and Removal of Au3+ and Subsequent Catalytic Application. Journal of Industrial and Engineering Chemistry, 84, 375-383. https://doi.org/10.1016/j.jiec.2020.01.021 |