|
基于人工智能、大数据技术在智慧城市基层治理的应用与分析
|
Abstract:
为深化新时代基层治理创新,根据国务院办公厅印发的《关于乡村加强和改进治理的指导意见》,2035年城乡公共服务、管理、安全保障需显著提升,实现基层治理活力、和谐有序,治理体系和治理能力基本现代化。随着信息技术的迅猛推进,如何有效融合大数据与人工智能等尖端科技,以辅助智慧城市基层治理体系的现代化建设,实现高效、智能的管理目标,已成为当前亟待深入思考与探索的重要议题。本文深入探讨了人工智能(AI)和大数据技术在智慧城市基层治理中的应用,通过结合大数据、NLP、深度学习神经网络等前沿技术,设计并实现了一套高效的基层治理平台。该平台通过智能识别、数据分析和全景展示等功能,实现了对城市治理的智能化、精细化管理。具体研究成果包括:利用卷积循环神经网络(CRNN)提高图像识别精度,通过大数据ETL技术构建多样化数据集,以及实现网格管理、事件管理和全景分析等多个核心业务模块的智能化升级。这些创新不仅显著提升了管理效率和监督效能,还为城市规划和治理提供了科学依据。
In order to deepen the innovation of grass-roots governance in the new era, according to the guidance on strengthening and improving governance in rural areas issued by the general office of the State Council, urban and rural public services, management and security need to be significantly improved in 2035, so as to realize the vitality, harmony and order of grass-roots governance, and the basic modernization of governance system and governance capacity. With the rapid development of information technology, how to effectively integrate cutting-edge technologies such as big data and artificial intelligence to assist the modernization of the grass-roots governance system of smart cities and achieve the goal of efficient and intelligent management has become an important issue to be considered and explored. This paper discusses the application of artificial intelligence (AI) and big data technology in the grassroots governance of smart cities NLP, Deep learning neural network and other cutting-edge technologies, designed and implemented a set of efficient grass-roots governance platform. Through the functions of intelligent identification, data analysis and panoramic display, the platform realizes the intelligent and refined management of urban governance. The specific research results include: Using Convolutional recurrent neural network (CRNN) to improve the accuracy of image recognition, building diversified data sets through big data ETL Technology, and realizing the intelligent upgrading of multiple core business modules such as grid management, event management and panoramic analysis. These innovations not only significantly improve the management efficiency and supervision efficiency, but also provide a scientific basis for urban planning and governance.
[1] | 郭志豪. AI在体育治理能力现代化中的应用研究——以大健康管理为例[C]//中国体育科学学会体育信息分会. 第十五届全国体育信息科技学术大会论文摘要汇编. 开封: 河南大学, 2024: 70-71. |
[2] | 姜秀敏, 李月. “非正式权威”塑造: 社会组织嵌入社区治理的三重路径——对山东省Q市F组织开展社区服务的个案分析[J]. 北京行政学院学报, 2022(2): 55. |
[3] | Bissacco, A., Cummins, M., Netzer, Y. and Neven, H. (2013) PhotoOCR: Reading Text in Uncontrolled Conditions. 2013 IEEE International Conference on Computer Vision, Sydney, 1-8 December 2013, 785-792. |
[4] | Collobert, R., Kavukcuoglu, K. and Farabet, C. (2011) Torch7: A Matlab-Like Environment for Machine Learning. BigLearn, NIPS Workshop, 6. |
[5] | Hu, X., Fu, C., Zhu, L., Wang, T. and Heng, P. (2021) SAC-Net: Spatial Attenuation Context for Salient Object Detection. IEEE Transactions on Circuits and Systems for Video Technology, 31, 1079-1090. https://doi.org/10.1109/tcsvt.2020.2995220 |
[6] | 贾婷, 陈强. 三重逻辑下AI技术治理制度供给质效提升研究[J]. 科学学研究, 2024, 42(8): 1596-1606. |
[7] | Burkhard, W.A. and Keller, R.M. (1973) Some Approaches to Best-Match File Searching. Communications of the ACM, 16, 230-236. https://doi.org/10.1145/362003.362025 |
[8] | 郑南宁. 人工智能新时代[J]. 智能科学与技术学报, 2019, 1(1): 1-3. |
[9] | 郭天霞. AI对工作流程和工作质量的影响: 自动化, 错误减少和优化[J]. 文化与社会心理学, 2023(12): 1-8. |
[10] | 王志宏, 杨震. 人工智能技术研究及未来智能化信息服务体系的思考[J]. 电信科学, 2017, 33(5): 1-11. |
[11] | Yao, Y., Duan, J., Xu, K., Cai, Y., Sun, Z. and Zhang, Y. (2024) A Survey on Large Language Model (LLM) Security and Privacy: The Good, the Bad, and the Ugly. High-Confidence Computing, 4, Article ID: 100211. https://doi.org/10.1016/j.hcc.2024.100211 |
[12] | Xie, E.Z., Wang, W.H., Yu, Z.D., et al. (2021) SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers. The 35th International Conference on Neural Information Processing Systems, 6-14 December 2021, 924. |
[13] | Ji, S., Xu, W., Yang, M. and Yu, K. (2013) 3D Convolutional Neural Networks for Human Action Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35, 221-231. https://doi.org/10.1109/tpami.2012.59 |
[14] | Wang, L., Li, R., Zhang, C., Fang, S., Duan, C., Meng, X., et al. (2022) UNetFormer: A UNet-Like Transformer for Efficient Semantic Segmentation of Remote Sensing Urban Scene Imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 190, 196-214. https://doi.org/10.1016/j.isprsjprs.2022.06.008 |
[15] | Rodriguez-Serrano, J.A., Gordo, A. and Perronnin, F. (2014) Label Embedding: A Frugal Baseline for Text Recognition. International Journal of Computer Vision, 113, 193-207. https://doi.org/10.1007/s11263-014-0793-6 |
[16] | Zhuge, M.C., Fan, D.P., Liu, Ni., et al. (2023) Salient Object Detection via Integrity Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45, 3738-3752. |
[17] | Mao, Y., et al. (2024) A Survey on Lora of Large Language Models. arXiv: 2407.11046. |
[18] | Xiang, J.Q. and Xiang, J. (2020) Community-Based Governance: Transformation of Rural Grassroots Governance System. Research on Community Construction in Rural China. |
[19] | Zeiler, M.D. (2012) ADADELTA: An Adaptive Learning Rate Method. arXiv: 1212.5701. |
[20] | Bai, J., et al. (2023) Qwen Technical Report. arXiv: 2309.16609. |
[21] | Mori, S., Suen, C.Y. and Yamamoto, K. (1992) Historical Review of OCR Research and Development. Proceedings of the IEEE, 80, 1029-1058. https://doi.org/10.1109/5.156468 |
[22] | Peng, Q. and Tu, L. (2023) Paddle-OCR-Based Real-Time Online Recognition System for Steel Plate Slab Spray Marking Characters. Journal of Control, Automation and Electrical Systems, 35, 221-233. https://doi.org/10.1007/s40313-023-01062-w |
[23] | Zhou, D.Q., Kang, B.Y., Jin, X.J., et al. (2021) DeepViT: Towards Deeper Vision Transformer. arXiv: 2103.11886. |
[24] | Mewada, A. and Dewang, R.K. (2022) SA-ASBA: A Hybrid Model for Aspect-Based Sentiment Analysis Using Synthetic Attention in Pre-Trained Language BERT Model with Extreme Gradient Boosting. Journal of Supercomputing, 79, 5516-5551. |
[25] | Danyal, M.M., Khan, S.S., Khan, M., Ullah, S., Mehmood, F. and Ali, I. (2024) Proposing Sentiment Analysis Model Based on BERT and XLNet for Movie Reviews. Multimedia Tools & Applications, 83, 64315-64339. |
[26] | He, A. and Abisado, M. (2024) Text Sentiment Analysis of Douban Film Short Comments Based on BERT-CNN-BiLSTM-Att Model. IEEE Access, 12, 45229-45237. https://doi.org/10.1109/ACCESS.2024.3381515 |